The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Danilenko E.V.

S.M. Kirov Medical Military Academy

Kulikov A.N.

S.M. Kirov Military Medical Academy

Makarova N.V.

Nikiforov Russian Center of Emergency and Radiation Medicine

Analysis of intraocular lens displacement relative to the haptic plane by ultrasound biomicroscopy data

Authors:

Danilenko E.V., Kulikov A.N., Makarova N.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2023;139(2): 11‑16

Read: 1343 times


To cite this article:

Danilenko EV, Kulikov AN, Makarova NV. Analysis of intraocular lens displacement relative to the haptic plane by ultrasound biomicroscopy data. Russian Annals of Ophthalmology. 2023;139(2):11‑16. (In Russ.)
https://doi.org/10.17116/oftalma202313902111

Recommended articles:
Ultrasound evaluation of eyelid weight placement resu­lts. Russian Annals of Ophthalmology. 2025;(3):20-26

References:

  1. Wang X, Dong J, Wang X, Wu Q. IOL tilt and decentration estimation from 3 dimensional reconstruction of OCT image. PLoS One. 2013;8(3):1-10.  https://doi.org/10.1371/journal.pone.0059109
  2. Avetisov SE, Ambartsumyan AR, Avetisov KS. Diagnostic capabilities of ultrasound biomicroscopy in phaco surgery. Russian Annals of Ophthalmology = Vestnik Oftal’mologii. 2013;129(5):32-41. (In Russ.).
  3. Kulikov AN, Danilenko EV, Dzilikhov AA. Results of IOL axial displacement prediction algorithm application after phacoemulsification. Russian Annals of Ophthalmology = Vestnik Oftal’mologii. 2020;136(2):38-43. (In Russ.). https://doi.org/10.17116/oftalma202013602138
  4. Kulikov AN, Danilenko EV, Dzilikhov AA. Analysis of the axial IOL displacement dynamics and associated refraction shift after phacoemulsification in patients with short eye length depending on pseudoexfoliation. Sovremennye tekhnologii v oftalmologii. 2019;(5):65-69. (In Russ.). https://doi.org/10.25276/2312-4911-2019-5-65-69
  5. Kulikov AN, Danilenko EV, Dzilikhov AA, Kondratov VS. Analysis of intraocular lens position dynamic after phacoemulsification according to low coherence reflectometry, ultrasound biomicroscopy and optical coherence tomography methods. Sovremennye tekhnologii v oftalmologii. 2018;(4):123-128. (In Russ.).
  6. Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020;46:2-7.  https://doi.org/10.1016/j.jcrs.2019.08.014
  7. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125(2):169-178.  https://doi.org/10.1016/j.ophtha.2017.08.027
  8. Reitblat O, Gali HE, Chou L, Bahar I, Weinreb RN, Afshari NA, Sella R. Intraocular lens power calculation in the elderly population using the Kane formula in comparison with existing methods. J Cataract Refract Surg. 2020; 46:1501-1507. https://doi.org/10.1097/j.jcrs.0000000000000308
  9. Kulikov AN, Danilenko EV, Dzilikhov AA. Axial intraocular lens displacements: diagnostics and prediction of postoperative refraction shift. Tochka zreniya. Vostok-Zapad. 2018;(1):25-31. (In Russ.). https://doi.org/10.25276/2410-1257-2018-1-25-30
  10. Kulikov AN, Kokareva EV, Dzilikhov AA. Intaocular lens position investigation with optical coherence tomography and induced refraction shift analysis after phacoemulsification. Oftalmokhirurgiya. 2018;(2):10-15. (In Russ.). https://doi.org/10.25276/0235-4160-2018-2-10-15

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.