The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Anisimova N.S.

FBUN «Tsentral'nyj NII epidemiologii» Rospotrebnadzora, Moskva, Rossija, 111123

Anisimov S.I.

Moscow State University of Medicine and Dentistry, 20/1 Delegatskaya St., Moscow, Russian Federation 127473

Shilova N.F.

S. Fyodorov Eye Microsurgery Federal State Institution, 59A Beskudnikovsky Blvd., Moscow, Russian Federation, 127486

Zemskaya A.Yu.

A.I. Yevdokimov Moscow State University of Medicine and Dentristy, Moscow, Russia

Gavrilova N.A.

A.I. Yevdokimov Moscow State University of Medicine and Dentristy, Moscow, Russia

Anisimova S.Yu.

Eye Center East-Sight Recovery LLC, 38 Bol’shoy Tishinskiy pereulok, Moscow, Russian Federation, 123557

Ultraviolet crosslinking in the treatment of keratoconus in patients with thin corneas

Authors:

Anisimova N.S., Anisimov S.I., Shilova N.F., Zemskaya A.Yu., Gavrilova N.A., Anisimova S.Yu.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(2): 99‑106

Read: 5137 times


To cite this article:

Anisimova NS, Anisimov SI, Shilova NF, Zemskaya AYu, Gavrilova NA, Anisimova SYu. Ultraviolet crosslinking in the treatment of keratoconus in patients with thin corneas. Russian Annals of Ophthalmology. 2020;136(2):99‑106. (In Russ.)
https://doi.org/10.17116/oftalma202013602199

Recommended articles:
Clinical outcomes of SMILE Xtra for myopia correction. Russian Annals of Ophthalmology. 2024;(5):87-96
Aberrometry in the diagnosis and treatment of kera­toconus. Russian Annals of Ophthalmology. 2024;(5):162-168
Combined approach to cata­ract surgery in kera­toconus. Russian Annals of Ophthalmology. 2024;(6):107-111

References:

  1. Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye (Lond). 2014;28:189-195. https://doi.org/10.1038/eye.2013.278
  2. Akhtar S, Bron AJ, Salvi SM, Hawksworth NR, Tuft SJ, Meek KM. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol. 2008;86:764-772. https://doi.org/10.1111/j.1755-3768.2007.01142.x
  3. Hayes S, Boote C, Tuft SJ, Quantock AJ, Meek KM. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Exp Eye Res. 2007;84:423-434. https://doi.org/10.1016/j.exer.2006.10.014
  4. Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T, et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci. 2007;48:1087-1094. https://doi.org/10.1167/iovs.06-1177
  5. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620-627. https://doi.org/10.1016/S0002-9394(02)02220-1
  6. Kymionis GD, Portaliou DM, Diakonis VF, Kounis GA, Panagopoulou SI, Grentzelos MA. Corneal collagen cross-linking with riboflavin and ultraviolet-A irradiation in patients with thin corneas. Am J Ophthalmol. 2012;153:24-28. https://doi.org/10.1016/j.ajo.2011.05.036
  7. Wen D, Li Q, Song B, Tu R, Wang Q, O’Brart DP, McAlinden C, Huang J. Comparison of standard versus accelerated corneal collagen cross-linking for keratoconus: a meta-analysis. Invest Ophthalmol Vis Sci. 2018;59(10):3920-3931. https://doi.org/10.1167/iovs.18-24656
  8. Ng ALK, Chan TCY, Cheng ACK. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin Exp Ophthalmol. 2016;44(1):8-14. https://doi.org/10.1111/ceo.12571
  9. Ozgurhan EB, Akcay BI, Kurt T, Yildirim Y, Demirok A. Accelerated corneal collagen cross-linking in thin keratoconic corneas. J Refract Surg. 2015;31:386-390. https://doi.org/10.3928/1081597X-20150521-11
  10. Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28:1179-1183. https://doi.org/10.1038/eye.2014.163
  11. Maurice DM, Giardini AA. Swelling of the cornea in vivo after the destruction of its limiting layers. Br J Ophthalmol. 1951;35:791-797. https://doi.org/10.1136/bjo.35.12.791
  12. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621-624. https://doi.org/10.1016/j.jcrs.2008.10.060
  13. Raiskup F, Spoerl E. Corneal cross-linking with hypo-osmolar riboflavin solution in thin keratoconic corneas. Am J Ophthalmol. 2011;152:28-32. e1. https://doi.org/10.1016/j.ajo.2011.01.016
  14. Chen X, Stojanovic A, Eidet JR, Utheim TP. Corneal collagen cross-linking (CXL) in thin corneas. Eye and Vision. 2015;2:1-7. https://doi.org/10.1186/s40662-015-0025-3
  15. Gu SF, Fan ZS, Wang LH, Tao XC1, Zhang Y, Wang CQ, et al. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas. Int J Ophthalmol. 2015;8:94-97. https://doi.org/10.3980%2Fj.issn.2222-3959.2015.01.17
  16. Koc M, Uzel MM, Koban Y, Tekin K, Tashpinar AG, Yilmazbas P. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin cornea: short-term results. Cornea. 2016;35:350-354. https://doi.org/10.1097/ico.0000000000000701
  17. Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: failure in an extremely thin cornea. Cornea. 2011;30:917-919. https://doi.org/10.1097/ico.0b013e31820143d1
  18. Kaya V, Utine CA, Yilmaz OF. Intraoperative corneal thickness measurements during corneal collagen cross-linking with hypoosmolar riboflavin solution in thin corneas. Cornea. 2012;31:486-490. https://doi.org/10.1097/ico.0b013e31821e4286
  19. Soeters N, Tahzib NG. Standard and hypoosmolar corneal cross-linking in various pachymetry groups. Optom Vis Sci. 2015;92:329-336. https://doi.org/10.1097/opx.0000000000000486
  20. Muller LJ, Pels E, Vrensen GF. The effects of organ-culture on the density of keratocytes and collagen fibers in human corneas. Cornea. 2001;20:86-95. https://doi.org/10.1097/00003226-200101000-00017
  21. Ahearne M, Yang Y, Then KY, Liu KK. Non-destructive mechanical characterisation of UVA/riboflavin crosslinked collagen hydrogels. Br J Ophthalmol. 2008;92:268-271. https://doi.org/10.1136/bjo.2007.130104
  22. Koppen C, Wouters K, Mathysen D, Rozema J, Tassignon MJ. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012;38:1000-1005. https://doi.org/10.1016/j.jcrs.2012.01.024
  23. Soeters N, Wisse RP, Godefrooij DA, Imhof SM, Tahzib NG. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159:821-828. e3. https://doi.org/10.1016/j.ajo.2015.02.005
  24. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012;38:283-291. https://doi.org/10.1016/j.jcrs.2011.08.030
  25. Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol. 2012;6:1785-1792. https://doi.org/10.2147/opth.s37335
  26. Lin ZR, Wu HP, Luo SR, Liu ZS, Dong N, Shang XM, Xie ZW, Yan L, Fang X. Accelerated transepithelial corneal collagen cross-linking for progressive keratoconus with a thin cornea: one-year results. Zhonghua Yan KeZaZhi. 2017;53(9):694-700. https://doi.org/10.3760/cma.j.issn.0412-4081.2017.09.011
  27. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35:540-546. https://doi.org/10.1016/j.jcrs.2008.11.036
  28. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92:e30-34. https://doi.org/10.1111/aos.12235
  29. Cantemir A, Alexa AI, Galan BG, Anton N, Ciuntu RE, Danielescu C, Chiselita D, Costin D. Outcomes of iontophoretic corneal collagen crosslinking in keratoconic eyes with very thin cornea. Medicine (Baltimore). 2017;96(47):e8758. https://doi.org/10.1097/md.0000000000008758
  30. Torres-Netto EA, Kling S, Hafezi N, Vinciguerra P, Randleman JB, Hafezi F. Oxygen diffusion may limit the biomechanical effectiveness of iontophoresis-assisted transepithelial corneal cross-linking. J Refract Surg. 2018;34:768-774. https://doi.org/10.3928/1081597X-20180830-01
  31. Kymionis GD, Diakonis VF, Coskunseven E, Jankov M, Yoo SH, Pallikaris IG. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009;9:10. https://doi.org/10.1186/1471-2415-9-10
  32. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal cross-linking: epithelial island cross- linking technique. Clin Ophthalmol. 2014;8:1337-1343. https://doi.org/10.2147/opth.s66372
  33. Cagil N, Can GD, Sarac O, Can ME. Outcomes of corneal collagen crosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas. Int Ophthalmol. 2017;37(1):103-109. https://doi.org/10.1007/s10792-016-0234-3
  34. Samaras K, O’Brart DP, Doutch J, Hayes S, Marshall J, Meek KM. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J Refract Surg. 2009;25:771-775. https://doi.org/10.3928/1081597X-20090813-03
  35. Jacob S, Kumar DA, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): a new technique for cross-linking thin corneas. J Refract Surg. 2014;30:366-372. https://doi.org/10.3928/1081597X-20140523-01
  36. Mazzotta C, Jacob S, Agarwal A, Kumar DA. In vivo confocal microscopy after contact lense-assisted corneal collagen cross-linking for thin keratoconic corneas. J Refract Surg. 2016;32(5):326-331. https://doi.org/10.3928/1081597X-20160225-04
  37. Sachdev MS, Gupta D, Sachdev G, Sachdev R. Tailored stroma; expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015;41:918-923. https://doi.org/10.1016/j.jcrs.2015.04.007
  38. Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus — initial clinical result in 6 eyes. Cornea. 2015;10:86-95. https://doi.org/10.1097/ico.0000000000000539
  39. Anisimov SI, Anisimova SY, Mistryukov AS, Anisimova NS. Technology of the local cross-linking (Part 1): keratotensotopography and vacuum-compression topographic test — new diagnostic possibilities for studying the local biomechanical properties of cornea. Int J Kerat Ect Cor Dis. 2017;6:14-16. https://doi.org/10.5005/jp-journals-10025-1137
  40. Anisimov SI, Anisimova SY, Mistryukov AS. Personalized (Local) UV-Crosslinking as a treatment of Keratoconus and cornealectasia. Oftalmologia. 2017;14:195-199. (In Russ.). https://doi.org/10.18008/1816-5095-2017-3-195-199
  41. Iseli HP, Popp M, Seiler T, Spoerl E, Mrochen M. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm). J Refract Surg. 2011;27:195-201. https://doi.org/10.3928/1081597X-20100604-01
  42. Lin JT, Cheng DC. Optimal focusing and scaling law for uniform photo- polymerization in a thick medium using a focused UV laser. Polymers. 2014;6:552-64. https://doi.org/10.3390/polym6020552
  43. Lin JT, Liu HW, Cheng DC. On the dynamic of UV-light initiated corneal cross linking. J Med Biolog Eng. 2014;34:247-250. https://doi.org/10.5405/jmbe.1532

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.