The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Karapetyan A.A.

Central Research Institute of Dental and Maxillofacial Surgery

Ukhanov M.M.

Central Research Institute of Dental and Maxillofacial Surgery

Ryahovsky A.N.

National Medical Research Center «Central Research Institute of Dentistry and Maxillofacial Surgery» Ministry of Health of the Russian Federation

Metal 3D printing in dentistry

Authors:

Karapetyan A.A., Ukhanov M.M., Ryahovsky A.N.

More about the authors

Journal: Stomatology. 2022;101(5): 85‑91

Read: 4052 times


To cite this article:

Karapetyan AA, Ukhanov MM, Ryahovsky AN. Metal 3D printing in dentistry. Stomatology. 2022;101(5):85‑91. (In Russ.)
https://doi.org/10.17116/stomat202210105185

Recommended articles:

References:

  1. Van Noort R. The future of dental devices is digital. Dent Mater. 2012; 28(1):3-12.  https://doi.org/10.1016/j.dental.2011.10.014
  2. Wohlers T. Wohlers report. Wohlers Associates; 2015.
  3. Hull CW inventor, UVP, Inc., assignee. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330; 1986.
  4. Ponsford M (14 February 2014). «The night I invented 3D printing». Cable News Network. Retrieved 14 February 2014. https://edition.cnn.com/2014/02/13/tech/innovation/the-night-i-invented-3d-printing-chuck-hall/
  5. Moussion A (2014). «Interview d’Alain Le Méhauté, l’un des pères de l’impression 3D». Primante 3D.  https://www.primante3d.com/inventeur/
  6. André Jean-Claude. Disdpositif pour realiser un modele de piece industrielle, 8411241, Jul 16, 1984. (Pat. Fr.).
  7. https://docs.cntd.ru/document/1200146332 
  8. US 5597589 A «Apparatus for producing parts by selective sintering». 1997. https://www.google.com/patents/US5597589
  9. Venkatesh KV, Nandini VV. Direct Metal Laser Sintering: A Digitised Metal Casting Technology. J Indian Prosthodont Soc. 2013;13(4):389-392.  https://doi.org/10.1007/s13191-013-0256-8
  10. Azpiazu-Flores FX, Lee DJ, Fengyuang Zheng. The use of selective laser melting in the fabrication of maxillary and mandibular metal base complete dentures for a patient with Ehlers-Danlos syndrome: A clinical report. J Prosthet Dent. 2020;16;S0022-3913(19)30747-4.  https://doi.org/10.1016/j.prosdent.2019.11.010
  11. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater. 2014;30(4):79-88.  https://doi.org/10.1016/j.dental.2014.01.008
  12. Lucchetti MC, Fratto G, Valeriani F, De Vittori E, Giampaoli S, Papetti P, Romano Spica V, Manzon L. Cobalt-chromium alloys in dentistry: An evaluation of metal ion release. J Prosthet Dent. 2015;114(4):602-608.  https://doi.org/10.1016/j.prosdent.2015.03.002
  13. Zeng L, Xiang N, Wei B. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing. J Prosthet Dent. 2014;112(5): 1217-1224. https://doi.org/10.1016/j.prosdent.2014.03.018
  14. Ren XW, Zeng L, Wei ZM, Xin XZ, Wei B. Effects of multiple firings on metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Prosthet Dent. 2016;115(1):109-114.  https://doi.org/10.1016/j.prosdent.2015.03.023
  15. Marta Revilla-León, Nadin Al-Haj Husain, Mohammed Mujtaba Methani, Mutlu Özcan. Chemical composition, surface roughness, and ceramic bond strength of additively manufactured cobalt-chromium dental alloys. J Prosthet Dent. 2020;25;S0022-3913(20)30227-4.  https://doi.org/10.1016/j.prosdent.2020.03.012
  16. Jang SH, Lee DH, Ha JY, Hanawa T, Kim KH, Kwon TY. Preliminary Evaluation of Mechanical Properties of Co-Cr Alloys Fabricated by Three New Manufacturing Processes. J Prosthodont. 2015;28(4):396-398.  https://doi.org/10.11607/ijp.4298
  17. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater. 2008; 24(10):1311-1315. https://doi.org/10.1016/j.dental.2008.02.011
  18. Örtorp A, Jönsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater. 2011;27(4):356-363.  https://doi.org/10.1016/j.dental.2010.11.015
  19. Xu D, Xiang N, Wei B.The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study. J Prosthet Dent. 2014;112(6):1437-40.97.  https://doi.org/10.1016/j.prosdent.2014.05.018
  20. Pompa G, Di Carlo S, De Angelis F, Cristalli MP, Annibali S. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An In Vitro Study. Biomed Res Int. 2015; 2015:318097. https://doi.org/10.1155/2015/318097
  21. Zeng L, Zhang Y, Liu Z, Wei B. Effects of repeated firing on the marginal accuracy of Co-Cr copings fabricated by selective laser melting. J Prosthet Dent. 2018;120(5):715-720.  https://doi.org/10.1016/j.prosdent.2014.09.004
  22. Kaleli N, Ural Ç, Özköylü G, Duran İ. Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks. J Prosthet Dent. 2019;121(6):922-928.  https://doi.org/10.1016/j.prosdent.2018.08.018
  23. Hong MH, Min BK, Lee DH, Kwon TY. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent. 2019;122(5):475-481.  https://doi.org/10.1016/j.prosdent.2019.03.002
  24. Al Maaz A, Thompson GA, Drago C, An H, Berzins D. Effect of finish line design and metal alloy on the marginal and internal gaps of selective laser melting printed copings. J Prosthet Dent. 2019;122(2):143-151.  https://doi.org/10.1016/j.prosdent.2019.02.009
  25. Necati Kaleli, Çağrı Ural. Digital evaluation of laser scanning speed effects on the intaglio surface adaptation of laser-sintered metal frameworks. J Prosthet Dent. 2020;123(6):874.e1-874.e7.  https://doi.org/10.1016/j.prosdent.2019.12.020
  26. Bengisu Yildirim. Effect of porcelain firing and cementation on the marginal fit of implant-supported metal-ceramic restorations fabricated by additive or subtractive manufacturing methods. J Prosthet Dent. 2020;22:S0022-3913(20)30229-8.  https://doi.org/10.1016/j.prosdent.2020.03.014
  27. Marta Revilla-León, Jose Luis Sánchez-Rubio, Javier Pérez-López, Jeffrey Rubenstein, Mutlu Özcan. Discrepancy at the implant abutment-prosthesis interface of complete-arch cobalt-chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering. J Prosthet Dent. 2020;24:S0022-3913(20)30236-5.  https://doi.org/10.1016/j.prosdent.2020.03.018
  28. Di Fiore A, Savio G, Stellini E, Vigolo P, Monaco C, Meneghello R. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks. J Prosthet Dent. 2020;124(1):75-80.  https://doi.org/10.1016/j.prosdent.2019.08.001
  29. Prabhu R, Prabhu G, Baskaran E, Arumugam EM. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up. J Indian Prosthodont Soc. 2016; 16(2):193-197.  https://doi.org/10.4103/0972-4052.176526
  30. Tregerman I, Renne W, Kelly A, Wilson D. Evaluation of removable partial denture frameworks fabricated using 3 different techniques. J Prosthet Dent. 2019;122(4):390-395.  https://doi.org/10.1016/j.prosdent.2018.10.013
  31. Li Chen, Wei-Shao Lin, Waldemar D Polido, George J Eckert, Dean Morton. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates. J Prosthet Dent. 2019;122(3):309-314.  https://doi.org/10.1016/j.prosdent.2019.02.007
  32. Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J Mech Behav Biomed Mater. 2017;69:404-411.  https://doi.org/10.1016/j.jmbbm.2017.01.048
  33. Ackland D, Robinson D, Lee PVS, Dimitroulis G. Design and clinical outcome of a novel 3D-printed prosthetic joint replacement for the human temporomandibular joint. Clin Biomech (Bristol, Avon). 2018;56:52-60.  https://doi.org/10.1016/j.clinbiomech.2018.05.006
  34. Afaque Rafique Memon, Enpeng Wang, Junlei Hu, Jan Egger, Xiaojun Chen. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Rev Med Devices. 2020;17(4):345-356.  https://doi.org/10.1080/17434440.2020.1736040
  35. Enpeng Wang, Haochen Shi, Yi S, Politis C, Lan L, Chen X. Computer-aided porous implant design for cranio-maxillofacial defect restoration. J Med Robot. 2020;7;e2134. https://doi.org/10.1002/rcs.2134
  36. Mangano F, Chambrone L, van Noort R, Miller C, Hatton P3, Mangano C. Direct metal laser sintering titanium dental implants: a review of the current literature. J Biomater. 2014:461534. https://doi.org/10.1155/2014/461534
  37. Mullen L, Stamp RC, Brooks WK, Jones E, Sutcliffe CJ. Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res. Part B. Applied Biomaterials. 2008;89;2:325-334.  https://doi.org/10.1002/jbm.b.31219
  38. Stamp R, Fox P, O’Neill W, Jones E, Sutcliffe C. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Scie: Mater Med. 2009;20(9):1839-1848. https://doi.org/10.1007/s10856-009-3763-8
  39. Hollander DA, Von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laserforming. Biomaterials. 2006;27(7):955-963.  https://doi.org/10.1016/j.biomaterials.2005.07.041
  40. Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res. Part A. 2009;88(3):823-831.  https://doi.org/10.1002/jbm.a.32033
  41. Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ. Highly porous titanium scaffolds for orthopaedic applications. J Biomed Mater Res. Part B. Applied Biomater. 2010;95(1):53-61.  https://doi.org/10.1002/jbm.b.31682
  42. Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014;112(5):1088-95.e1.  https://doi.org/10.1016/j.prosdent.2014.04.026
  43. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008;24(11):1525-1533. https://doi.org/10.1016/j.dental.2008.03.029
  44. Dos Santos LCP, Malheiros FC, Guarato AZ. Surface parameters of as-built additive manufactured metal for intraosseous dental implants. J Prosthet Dent. 2020;124(2):217-222.  https://doi.org/10.1016/j.prosdent.2019.09.010
  45. Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method: A systematic review. J Prosthet Dent. 2019;122(3):270-274.  https://doi.org/10.1016/j.prosdent.2019.01.018
  46. Revilla-León M, Sadeghpour M, Özcan M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistr. J Prosthodont. 2020;29(7):579-593.  https://doi.org/10.1111/jopr.13212

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.