The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Fatkhudinova N.L.

Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia

Vasil’ev A.V.

State budgetary healthcare facility «Chelyabinsk Regional Clinical Hospital», Chelyabinsk, Russian Federation

Osidak E.O.

Imtek Ltd., Moscow, Russia

Starikova N.V.

Central Research Institute of Stomatology and Maxillofacial Surgery, Moscow, Russia

Domogatsky S.P.

Institute of Experimental Cardiology of the National Medical Research Center of Cardiology, Moscow, Russia

Gol’dshtein D.V.

Federal state budgetary institution of science 'Institute of Problems of Laser and Information Technologies', Russian Academy of Sciences, Moscow

Kulakov A.A.

Tsentral'nyĭ nauchno-issledovatel'skiĭ institut stomatologii i cheliustno-litsevoĭ khirurgii Minzdravsotsrazvitiia, Moskva

The prospects of collagen as a basis for curable and activated osteoplastic materials

Authors:

Fatkhudinova N.L., Vasil’ev A.V., Osidak E.O., Starikova N.V., Domogatsky S.P., Gol’dshtein D.V., Kulakov A.A.

More about the authors

Journal: Stomatology. 2018;97(6): 78‑83

Read: 2372 times


To cite this article:

Fatkhudinova NL, Vasil’ev AV, Osidak EO, Starikova NV, Domogatsky SP, Gol’dshtein DV, Kulakov AA. The prospects of collagen as a basis for curable and activated osteoplastic materials. Stomatology. 2018;97(6):78‑83. (In Russ.)
https://doi.org/10.17116/stomat20189706178

Recommended articles:
Hybrid wound coating in reha­bilitation of severe thermal burns. (An expe­rimental study). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):40-49
Modern methods of correction of age-related changes in the female body. Plastic Surgery and Aesthetic Medi­cine. 2025;(1):90-96

References:

  1. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. The Journal of biological chemistry. 2002;277(6):4223-4231. https://doi.org/10.1074/jbc.m110709200
  2. Gelse K, Poschl E, Aigner T. Collagens — structure, function, and biosynthesis. Advanced drug delivery reviews. 2003;55(12):1531-1546. https://doi.org/10.1016/j.addr.2003.08.002
  3. Stoltz M, Timpl R, Furthmayr H, Kühn K. Structural and immunogenic properties of a major antigenic determinant in neutral salf-extracted rat-skin collagen. European Journal of Biochemistry. 1973;37(2):287-294. https://doi.org/10.1111/j.1432-1033.1973.tb02987.x
  4. Mark K. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In: Seibel MJ, Robins SP, Bilezikian JP, eds. Dynamics of Bone and Cartilage Metabolism. Orlando: Academic Press; 1999. https://doi.org/10.1016/b9-78-012088-5/62650-0029
  5. Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of Controlled Release. 2010;142(2):149-159. https://doi.org/10.1016/j.jconrel.2009.10.018
  6. Friess W. Collagen — biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 1998;45(2):113-136.
  7. Pedchenko V, Zent R, Hudson BG. v 3 and v 5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the v 3 chain of type IV collagen: implication for the mechanism of endothelial cell adhesion. The Journal of Biological Chemistry. 2004;279(4):2772-2780. https://doi.org/10.1074/jbc.m311901200
  8. Taubenberger AV, Woodruff MA, Bai H, Muller DJ, Hutmacher DW. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials. 2010;31(10):2827-2835. https://doi.org/10.1016/j.biomaterials.2009.12.051
  9. Bard JB, Hay ED. The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. Journal of Cell Biology. 1975;67(2PT.1):400-418. https://doi.org/10.1083/jcb.67.2.400
  10. Heino J. The collagen family members as cell adhesion proteins. BioEssays. 2007;29(10):1001-1010. https://doi.org/10.1002/bies.20636
  11. Zeugolis DI, Khew ST, Yew ES, Ekaputra AK, Tong YW, Yung LY, Hutmacher DW, Sheppard C, Raghunath M. Electro-spinning of pure collagen nano-fibres — just an expensive way to make gelatin? Biomaterials. 2008;29(15):2293-2305. https://doi.org/10.1016/j.biomaterials.2008.02.009
  12. Kleinman HK, Klebe RJ, Martin GR. Role of collagenous matrices in the adhesion and growth of cells. Journal of cell biology. 1981;88(3):473-485. https://doi.org/10.1083/jcb.88.3.473
  13. Shoulders MD, Raines TR. Collagen structure and stability. Annual Review of Biochemistry. 2009;78:929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  14. Schmocker A, Khoushabi A, Schizas C, Bourban PE, Pioletti DP, Moser C. Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation. Journal of Biomedical Optics. 2014;19(3):35004. https://doi.org/10.1117/1.jbo.19.3.035004
  15. Osidak EO, Osidak MS, Ahmanova MA, Domogatsky SP. Collagen — biomaterial for growth factors delivery and tissue regeneration. Russian Chemical Journal. 2012;56(5-6):102-113. (In Russ.)
  16. Shekhter AB. Connective tissue as an integral system: role of cell-cell and cell-matrix interactions. Connective Tissue Research. 1986;15(1-2):23-31. https://doi.org/10.3109/03008208609001970
  17. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology Progress. 2009;25(6):1539-1560. https://doi.org/10.1002/btpr.246
  18. Bronzino J. The biomedical engineering handbook. 2-nd ed. Boca Raton (FL): CRC Press; 1999.
  19. Pannone PJ, ed. Trends in biomaterials research. New York: Nova Science Publishers; 2007.
  20. Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clinical materials. 1992;9(3-4):139-148. https://doi.org/10.1016/0267-6605(92)90093-9
  21. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-4351. https://doi.org/10.1016/s0142-9612(03)00340-5
  22. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B: Reviews. 2008;14(2):149-165. https://doi.org/10.1089/ten.teb.2007.0332
  23. Mann BK. Biologic gels in tissue engineering. Clinics in Plastic Surgery. 2003;30(4):601-609. https://doi.org/10.1016/s0094-1298(03)00078-6
  24. Schmitt FO. Telopeptide control of tropocollagen interaction dynamics. Federation Proceedings. 1964;23:618-622.
  25. Hilkin AM, Shehter AB, Istranov LP, Lemenev VL. Collagen and its usage in medicine. M.: Medicina; 1976. (In Russ.)
  26. Robert L, Robert B. Structural glycoproteins of connective tissue: their role in morphogenetic and immunopathology. In: Fricke R, Hartmann F, eds. Connective Tissues. Berlin Heidelberg: Springer-Verlag; 1974. https://doi.org/10.1007/978-3-642-61932-8_32
  27. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomaterialia. 2012;8(9):3191-3200. https://doi.org/10.1016/j.actbio.2012.06.014
  28. Sampas CT, Philbrook M, Seedling A, McPherson J, inventors; Genzyme Corporation, assignee. Thermo-sensitive bone growth compositions. JP Application 2016514030. May 19, 2016.
  29. Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone. 2015;80:43-59. https://doi.org/10.1016/j.bone.2015.05.025
  30. Wang Y, Yang C, Chen X, Zhao N. Biomimetic formation of hydroxyapatite/collagen matrix composite. Advanced Engineering Materials. 2006;8(1-2):97-100. https://doi.org/10.1002/adem.200500220
  31. Brodie JC, Goldie E, Connel G, Merry J, Grant MH. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. Journal of Biomedical Materials Research. 2005;73(4):409-421. https://doi.org/10.1002/jbm.a.30279
  32. Zou C, Weng W, Deng X, Cheng K, Liu X, Du P, Shen G, Han G. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Biomaterials. 2005;26(26):5276-5284. https://doi.org/10.1016/j.biomaterials.2005.01.064
  33. Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA. Crosslinking of Collagen Gels by Transglutaminase. Journal of Biomedical Materials Research Part A. 2004;68(4):756-762. https://doi.org/10.1002/jbm.a.20110
  34. Zhang Z, Ma Z, Zhang Y, Chen F, Zhou Y, An Q. Dehydrothermally crosslinked collagen/hydroxyapatite composite for enhanced in vivo bone repair. Colloids and Surfaces B: Biointerfaces. 2018;163:394-401. https://doi.org/10.1016/j.colsurfb.2018.01.011
  35. Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 2017;11(1):164-174. https://doi.org/10.1002/term.1896
  36. Zhang X, Xu L, Huang X, Wei S, Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. Journal of Biomedical Materials Research Part A. 2012;100(11):2960-2969. https://doi.org/10.1002/jbm.a.34243
  37. Choi Y, Kim HJ, Min KS. Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restorative Dentistry & Endodontics. 2016;41(4):296-303. https://doi.org/10.5395/rde.2016.41.4.296
  38. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials. 2015;8(9):5744-5794. https://doi.org/10.3390/ma8095273
  39. Tokareva MI, Ivantsova MN, Mironov MA. Heterocycles of natural origin as non-toxic reagents for the crosslinking of proteins and polysaccharides. Chemistry of heterocyclic compounds. 2017;53(1):21-35. (In Russ.) https://doi.org/10.1007/s10593-017-2016-x
  40. Romagnoli C, D’Asta F, Brandi ML. Drug delivery using composite scaffolds in the context of bone tissue engineering. Clinical cases in mineral and bone metabolism. 2013;10(3):155-161.
  41. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews. 2007;59(4-5):339-359. https://doi.org/10.1016/j.addr.2007.03.016
  42. Kim S, Cui ZK, Kim PJ, Jung LY, Lee M. Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomaterialia. 2018;72:45-54. https://doi.org/10.1016/j.actbio.2018.03.034
  43. Seto SP, Miller T, Temenoff JS. Effect of Selective Heparin Desulfation on Preservation of Bone Morphogenetic Protein-2 Bioactivity after Thermal Stress. Bioconjugate Chemistry. 2015;26(2):286-293. https://doi.org/10.1021/bc500565x
  44. Mulloy B, Forster MJ. Conformation and dynamics of heparin and heparan sulfate. Glycobiology. 2000;10(11):1147-1156. https://doi.org/10.1093/glycob/10.11.1147
  45. Mumcuoglu D, de Miguel L, Jekhmane S, Siverino C, Nickel J, Mueller TD, van Leeuwen JP, van Osch GJ, Kluijtmans SG. Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. Materials Science and Engineering. 2018;84:271-280. https://doi.org/10.1016/j.msec.2017.11.031
  46. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). International Orthopaedics. 2007;31(6):729-734. https://doi.org/10.1007/s00264-007-0418-6
  47. Licina P, Coughlan M, Johnston E, Pearcy M. Comparison of Silicate-Substituted Calcium Phosphate (Actifuse) with Recombinant Human Bone Morphogenetic Protein-2 (Infuse) in Posterolateral Instrumented Lumbar Fusion. Global Spine Journal. 2015;5(6):471-478. https://doi.org/10.1055/s-0035-1566230
  48. Wallace SC, Pikos MA, Prasad H. De novo bone regeneration in human extraction sites using recombinant human bone morphogenetic protein-2/ACS: a clinical, histomorphometric, densitometric, and 3-dimensional cone-beam computerized tomographic scan evaluation. Implant Dentistry. 2014;23(2):132-137. https://doi.org/10.1097/id.0000000000000035
  49. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893-899. https://doi.org/10.1126/science.150.3698.893
  50. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. Journal of Experimental Medicine. 1971;133(2):275-288. https://doi.org/10.1084/jem.133.2.275
  51. Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB. The role of vascular endothelial growth factor in ossification. International journal of oral science. 2012;4(2):64-68.
  52. Neve A, Cantatore FP, Corrado A, Gaudio A, Ruggieri S, Ribatti D. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regulatory Peptides. 2013;184:81-84. https://doi.org/10.1016/j.regpep.2013.03.014
  53. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261(5121):600-603. https://doi.org/10.1126/science.8342023
  54. Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Research International. 2013;561098. https://doi.org/10.1155/2013/561098
  55. Khurana S, Melacarne A, Yadak R, Schouteden S, Notelaers T, Pistoni M, Maes C, Verfaillie CM. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells. 2014;32(11):3012-3022. https://doi.org/10.1002/stem.1794
  56. Evans CH. Gene delivery to bone. Advanced Drug Delivery Reviews. 2012;64(12):1331-1340. https://doi.org/10.1016/j.addr.2012.03.013
  57. Rose T, Peng H, Usas A, Josten C, Fu FH, Huard J. Ex vivo gene therapy with BMP-4 for critically sized defects and enhancement of fracture healing in an osteoporotic animal model. Der Unfallchirurg. 2005;108(1):25-34.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.