The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nagatkina O.V.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
National Research Tomsk Polytechnic University

Sokolova E.S.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
National Research Tomsk Polytechnic University

Suvorova O.A.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
National Research Tomsk Polytechnic University

Antonov D.V.

National Research Tomsk Polytechnic University

Technological evolution of inhalers: intelligent systems and controlled delivery to the respiratory tract

Authors:

Nagatkina O.V., Sokolova E.S., Suvorova O.A., Antonov D.V.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2025;28(8): 115‑122

Read: 238 times


To cite this article:

Nagatkina OV, Sokolova ES, Suvorova OA, Antonov DV. Technological evolution of inhalers: intelligent systems and controlled delivery to the respiratory tract. Russian Journal of Preventive Medicine. 2025;28(8):115‑122. (In Russ.)
https://doi.org/10.17116/profmed202528081115

Recommended articles:
Features of modern inha­lation therapy and topi­cal aero­sol deli­very. Russian Journal of Preventive Medi­cine. 2024;(11):122-128

References:

  1. Matuszak M, Ochowiak M, Włodarczak S, et al. State-of-the-art review of the application and development of various methods of aerosol therapy. International Journal of Pharmaceutics. 2022;614:121432. https://doi.org/10.1016/j.ijpharm.2021.121432
  2. Hickey AJ. Dry Powder Inhalers: An Overview. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2023;36(6):316-323.  https://doi.org/10.1089/jamp.2023.29104.ajh
  3. Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Critical Reviews in Therapeutic Drug Carrier Systems. 2002;19(4-5):425-498.  https://doi.org/10.1615/critrevtherdrugcarriersyst.v19.i45.40
  4. Zabczyk C, Blakey JD. The Effect of Connected «Smart» Inhalers on Medication Adherence. Frontiers in Medical Technology. 2021;3:657321. https://doi.org/10.3389/fmedt.2021.657321
  5. Van de Hei SJ, Stoker N, Flokstra-de Blok BMJ, et al. Anticipated barriers and facilitators for implementing smart inhalers in asthma medication adherence management. NPJ primary care respiratory medicine. 2023;33(1):22.  https://doi.org/10.1038/s41533-023-00343-w
  6. Cruden Hughes KC, Chan AHY. The Impact of Smart Inhalers on Personalized Asthma Management. touchREVIEWS in Respiratory and Pulmonary Diseases. 2025;10(1):1-6.  https://doi.org/10.17925/USPRD.2025.10.1.1
  7. Van de Hei SJ, Kim CH, Honkoop PJ, et al. Long-term cost-effectiveness of digital inhaler adherence technologies in difficult-to-treat asthma. Journal of Allergy and Clinical Immunology. In practice. 2023;11:3064-3073. https://doi.org/10.1016/j.jaip.2023.06.051
  8. Chan AHY, Pleasants RA, Dhand R, et al. Digital Inhalers for Asthma or Chronic Obstructive Pulmonary Disease: A Scientific Perspective. Pulmonary Therapy. 2021;7(2):345-376.  https://doi.org/10.1007/s41030-021-00167-4
  9. Ferreira A, Oliveira G, Pinto E, et al. InspirerMundi: a digital ecosystem to improve asthma control. Journal of Medical Internet Research. 2020; 22(5):e16975. https://doi.org/10.2196/16975
  10. Newman SP. Principles of metered-dose inhaler design. Respiratory Care. 2005;50(9):1177-1190.
  11. Avdeev SN. Modern possibilities of nebulizer therapy: principles of operation and new technical solutions. RMZh. Medicinskoe obozrenie. 2013;21(19): 945-952. (In Russ.).
  12. Ijsebaert JC, Geerse KB, Marijnissen JC, et al. Electro-hydrodynamic atomization of drug solutions for inhalation purposes. Journal of Applied Physiology (Bethesda, Md.: 1985). 2001;91(6):2735-2741. https://doi.org/10.1152/jappl.2001.91.6.2735
  13. Chen L, Ru C, Zhang H, et al. Progress in Electrohydrodynamic Atomization Preparation of Energetic Materials with Controlled Microstructures. Molecules. 2022;27(7):2374. https://doi.org/10.3390/molecules27072374
  14. Arnanthigo Y, Yurteri CU, Biskos G, et al. Out-scaling electrohydrodynamic atomization systems for the production of well-defined droplets. Powder Technology. 2011;214(3):382-387.  https://doi.org/10.1016/j.powtec.2011.08.036
  15. Arruebo M, Fernández-Pacheco R, Ibarra MR, et al. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22-32.  https://doi.org/10.1016/s1748-0132(07)70084-1
  16. Guarín-González YA, Cabello-Guzmán G, Reyes-Gasga J, et al. Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Gels. 2024;10(10):672.  https://doi.org/10.3390/gels10100672
  17. D’Onofrio I, De Giorgio G, Sajapin R, et al. Inhalable drug-loaded silk fibroin carriers for pulmonary drug delivery. RSC Advances. 2024;14(37):27288-27297. https://doi.org/10.1039/d4ra03324h
  18. Price DN, Stromberg LR, Kunda NK, et al. In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles. Molecular Pharmaceutics. 2017;14(12):4741-4750. https://doi.org/10.1021/acs.molpharmaceut.7b00532
  19. McBride AA, Price DN, Muttil P. Pulmonary Delivery of Magnetically Targeted Nano-in-Microparticles. Methods in Molecular Biology (Clifton, N.J.). 2017;1530:369-378.  https://doi.org/10.1007/978-1-4939-6646-2_23
  20. Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research. 2006;67(1):55-60. 
  21. Parhi R, Suresh P. Supercritical Fluid Technology: A Review. Journal of Advanced Pharmaceutical Science and Technology. 2013;1(1):13-36.  https://doi.org/10.14302/issn.2328-0182.japst-12-145
  22. Kankala RK, Zhang YS, Wang SB, et al. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Advanced Healthcare Materials. 2017;6(16):10.1002/adhm.201700433. https://doi.org/10.1002/adhm.201700433
  23. Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: A promising approach in pharmaceutical research. Current Pharmaceutical Design. 2012; 18(1):22-32.  https://doi.org/10.3109/10837450.2012.726998
  24. Gumani D, Newmarch W, Puopolo A, et al. Inhaler Technology. International Journal of Respiratory and Pulmonary Medicine. 2016;3:064.  https://doi.org/10.23937/2378-3516/1410064
  25. Huang QY, Le Y, Hu H, et al. Experimental research on surface acoustic wave microfluidic atomization for drug delivery. Scientific Reports. 2022; 12:7930. https://doi.org/10.1038/s41598-022-11132-9
  26. Suwanpitak K, Lim LY, Singh I, et al. Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler). Pharmaceutics. 2022;14(9):1922. https://doi.org/10.3390/pharmaceutics14091922
  27. Wang S, Chen X, Han X, et al. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics. 2023;15(2):416.  https://doi.org/10.3390/pharmaceutics15020416
  28. Fletcher DF, Chaugule V, Gomes dos Reis L, et al. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers. Pharmaceutical Research. 2021;38:277-288. 
  29. Huanbutta K, Burapapadh K, Sriamornsak P, et al. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics. 2023;15(7):1877. https://doi.org/10.3390/pharmaceutics15071877
  30. Cazzola M, Cavalli F, Usmani OS, et al. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opinion on Drug Delivery. 2020;17(5):635-646.  https://doi.org/10.1080/17425247.2020.1739021
  31. Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377(9770):1032-1045. https://doi.org/10.1016/S0140-6736(10)60926-9
  32. Gomes Dos Reis L, Traini D. Advances in the use of cell penetrating peptides for respiratory drug delivery. Expert Opinion on Drug Delivery. 2020; 17(5):647-664.  https://doi.org/10.1080/17425247.2020.1739646
  33. Chow AH, Tong HH, Chattopadhyay P, et al. Particle engineering for pulmonary drug delivery. Pharmaceutical Research. 2007;24(3):411-437.  https://doi.org/10.1007/s11095-006-9174-3
  34. Rogueda P. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opinion On Drug Delivery. 2005;2(4):625-638.  https://doi.org/10.1517/17425247.2.4.625
  35. Nanjwade BK, Adichwal SA, Gaikwad KR, et al. Pulmonary drug delivery: novel pharmaceutical technologies breathe new life into the lungs. PDA Journal of Pharmaceutical Science and Technology. 2011;65(5):513-534. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.