- Издательство «Медиа Сфера»
Эндокринология по праву признана одной из основополагающих дисциплин клинической и фундаментальной медицины. Гормоны, реализуя свой биологический эффект через эндокринные, пара- и аутокринные механизмы, выполняют ведущую роль в регуляции всех органов и систем живого организма, задействованы в процессах опухолевого роста, эмбриогенеза и старения.
В последние годы благодаря успехам молекулярной генетики к которым, безусловно, следует отнести и расшифровку генома человека, отмечен колоссальный прогресс медицинской науки в целом, и особенно эндокринологии. Повсеместное внедрение в фундаментальную и клиническую медицину современных достижений генетики и молекулярной биологии значительно изменило наши представления об этиопатогенезе и, как следствие, возможности диагностики, лечения и профилактики многих заболеваний. В эндокринной системе гены имеют отношение к реализации разнообразных функций, кодируя белковые гормоны, рецепторы, ферменты биосинтеза стероидов, молекулы внутриклеточного сигналинга, транспортные белки, ионные каналы, факторы транскрипции и другие молекулы. В настоящее время известно, что многие эндокринные заболевания имеют наследственную природу, ассоциируясь с дефектом какого-то определенного гена или характеризуясь полигенным типом наследования. Наиболее значимые успехи достигнуты в диагностике и лечении моногенных эндокринных заболеваний.
В данной работе представлено краткое обобщение случаев моногенных наследственных эндокринопатий, верифицированных в ФГУ ЭНЦ за последние 15 лет. Выявленные нами заболевания объединены по группам генов, исходя из структуры и биологической функции кодируемых ими белковых молекул.
Среди эндокринных заболеваний, ассоциированных с дефектами генов, кодирующих белковые прогормоны , наиболее распространенными являются дефекты гена GH1, который кодирует прогормон СТГ (табл. 1).
Другие, представленные в табл. 1, заболевания являются более редкими. Дефект гена POMC (ранее неописанная гомозиготная мутация W58X) был заподозрен клинически у ребенка с ранней манифестацией ожирения, гипогликемическим синдромом (проявление вторичного гипокортицизма) и рыжим цветом волос. Гетерозиготная мутация в гене AVP (c. 230—232delAGG p.E78del) была выявлена в семье, в которой в нескольких поколениях отмечалась клиника нейрогенного (центрального) несахарного диабета, имевшего четко прослеживаемый доминантный тип наследования. Анализ гена проинсулина (INS) должен быть включен в алгоритм обследования при подозрении на неонатальный сахарный диабет (СД). Дефект в этом гене (de novo гетерозиготная мутация L30R) был выявлен у ребенка, у которого СД манифестировал в возрасте 6 мес на фоне тяжелого кетоацидоза и высокой потребности в инсулине.
Среди заболеваний, ассоциированных с дефектами генов, кодирующих ферменты, наиболее распространенными являются дефекты гена CYP21A2 (21-гидроксилаза) (табл. 2).
Нами также накоплен опыт по диагностике и лечению других, более редких дефектов биосинтеза стероидных гормонов. Среди последних чаще других выявлялись случаи дефицита p450c11 (11 β-гидроксилазы), которые при классическом течении заболевания проявлялись пре- и постнатальной вирилизацией у девочек, ложным преждевременным половым развитием у мальчиков и артериальной гипертензией [4]. Классическая форма дефицита P450c11 была ассоциирована со следующими мутациями в гене CYP11B1: c.372delG p.H125fsX144, c.1392—1394insCTGp.L464—H465insL, E371X, R448C, L299P, Q258H и Q338X. Неклассическая форма дефицита P450c11 может протекать без артериальной гипертензии и манифестировать лишь синдромом преждевременного адренархе. У одного из таких пациентов нами была выявлена составная гетерозиготная мутация R448C/R384P. Недостаточность 17α-гидроксилазы/17,20-лиазы (ген CYP17) характеризуется избыточной продукцией минералокортикоида дезоксикортикостерона и дефицитом половых стероидов в надпочечниках и гонадах, что клинически проявляется артериальной гипертензией, первичным гипогонадизмом и НФП 46XY. Следует отметить, что до пубертата у генетических мальчиков заболевание клинически схоже с синдромом тестикулярной феминизации, и именно такой диагноз был первоначально поставлен всем пациентам с дефектом CYP17 и НФП 46XY в нашей серии наблюдений [5, 6]. Дефицит 3β-гидроксистероиддегидрогеназы/Δ5-Δ4-изомеразы (ген HSD3B2) был диагностирован нами у пациентов с тяжелой сольтеряющей формой ВДКН при минимально выраженной вирилизации у девочек (3 наблюдения) и практически женском строении наружных гениталий (Прадер 3) у генетического мальчика [7]. Интересно, что в двух неродственных семьях, принадлежащих к осетинской этнической группе, в гене HSD3B2 была выявлена одна и та же гомозиготная мутация W230X, что, вероятно, связано с эффектом основателя. Большой интерес представляет верифицированный нами случай самой редкой формы ВДКН — дефицита P450scc. У мальчика с этим заболеванием при рождении были выявлены двусторонний крипторхизм и стволовая гипоспадия, тогда как надпочечниковая недостаточность дебютировала лишь в 9-летнем возрасте. Данные гормонального обследования позволили заподозрить наличие раннего дефекта биосинтеза стероидов, и диагноз был подтвержден при обнаружении мутации L222P в гене CYP11A1 [8].
Дефицит альдостеронсинтазы (ген CYP11B2) может быть заподозрен при наличии синдрома потери соли, сниженного сывороточного уровня альдостерона, высокой активности ренина в плазме и сохранной секреции кортизола (нормальный уровень АКТГ). Гормональная диагностика может быть затруднена на фоне проводимой терапии кортикостероидами. Дефекты гена CYP11B2 (мутации T185I/L299P и Q178X) были выявлены нами у двух мальчиков в возрасте 1 года и 2,3 года соответственно, у которых первоначально была диагностирована сольтеряющая форма дефицита 21-гидроксилазы. Верификация диагноза позволила отменить глюкокортикоиды и добиться адекватной компенсации состояния только на терапии кортинеффом [9]. Кодируемый геном HSD17B3 фермент 17β-гидроксистероиддегидрогеназа III типа (17β-ГСДIII) активирует последний этап биосинтеза тестостерона в яичках. Внутриутробно при дефиците 17β-ГСД III адекватной маскулинизации наружных гениталий у мальчиков не происходит, однако вирилизация может отмечаться в пубератном периоде. Дефицит 17β-ГСД III был заподозрен нами у 2 пациентов с НФП 46XY (женский фенотип), обратившихся в связи с отсутствием развития вторичных женских признаков и проявлениями вирилизации в пубертате. Диагноз был подтвержден при выявлении повышенного соотношения андростендион/тестостерон в крови и детекции мутаций в гене HSD17B3 (c.728—734delGATAACC p.I244fsX254/c.277+4A>T и c.277+4A>T) [10].
Ряд ферментов отвечают за периферический метаболизм стероидов. В почках 11β-гидроксистероид-дегидрогеназа II типа (11β-ГСД II) переводит активный кортизол в неактивный кортизон, тем самым предотвращая проявление минералокортикоидной активности кортизола. Дефицит 11β-ГСД II может быть заподозрен при клинических проявлениях гиперальдостеронизма на фоне низких уровней альдостерона и активности ренина в плазме. Данное заболевание было выявлено у пациента 3 лет, обследованного в связи с тяжелой гипокалиемией и артериальной гипертензией. После верификации диагноза (гомозиготная мутация H304R в гене HSD11B2) компенсация состояния была достигнута на фоне терапии спиронолактоном. 5α-редуктаза II типа (ген SRD5A2) активирует периферическое превращение тестостерона в активный андроген-дигидротестостерон в тканях урогенитального синуса, что необходимо для маскулинизации наружных гениталий мужского плода. При дефиците фермента развивается НФП 46XY, однако адаптация ребенка в мужском поле возможна в связи с ожидаемой удовлетворительной маскулинизацией в пубертатном периоде. Предполагалось, что дефицит 5α-редуктазы II типа является частой патологией в структуре НФП 46XY, однако в российской популяции мутации гена SRD5A2 были выявлены нами лишь у 3 из 81 больного с данным синдромом [11]. Единственным известным к настоящему времени наследственным заболеванием, в основе которого лежит повышение активности стероидогенного фермента, является синдром избытка ароматазы (СИА). Клинически данное состояние проявляется допубертатной гинекомастией у мужчин и ранним менархе и макромастией у женщин. Под нашим наблюдением находилась семья, в которой СИА был диагностирован в 5 поколениях, в общей сложности у 16 человек. Причиной СИА в данной семье была хромосомная перестройка, в результате которой ген CYP19 регулировался с промотора другого гена — TRPM7, экспрессируемого во всех тканях [12].
Фермент глюкокиназа, активирующий фосфорилирование глюкозы до глюкозо-6-фосфата, играет важную роль в регуляции секреции инсулина. Наиболее распространенной патологией, ассоциированной с дефектами гена GCK, является сахарный диабет тип MODY2, который, по нашим данным, в российской популяции является наиболее частым в структуре MODY — диабета [13]. На данный момент MODY2 верифицирован нами более чем в 40 неродственных семьях, среди которых в том числе было выявлено 17 ранее неизвестных мутаций: T255S, A114P, S76Y, G170D, L20R, V55A, L324R, P145L, D165G, V91L, A173T, T228P, E242G, Y273N, T326P, V374L и с.864-1G>C.
Первые пять, из представленных в табл. 3,
Инактивирующие мутации гена MC2R являются одной из причин изолированного дефицита глюкокортикоидов (АКТГ-резистентность). Несмотря на врожденный характер заболевания, оно может манифестировать и в старшем возрасте, у диагностированного нами пациента (мутация T152K) аддисонический криз развился в 11 лет. Одной из самых распространенных наследственных патологий, обусловленной инактивирующими дефектами рецепторов, сопряженных с G-белком, является X-сцепленный нефрогенный несахарный диабет. Данное заболевание было верифицировано у 11 пациентов в возрасте от 6 мес до 14 лет, имевших различную степень тяжести заболевания. У этих пациентов были выявлены следующие гемизиготные мутации в гене AVPR2: c.583delT p.C195fsX211, T134M, F178L, C82Y, V88L, L131P, D85N, D191A, S127Y, Y205X и c.303—304—InsGGCC—T101fs191X. Интересно, что легкие проявления несахарного диабета отмечались в одной из семей и у жещин-носителей мутации Y205X.
Рецептор СТГ (ген GHR) относится к классу цитокиновых рецепторов, и его дефекты ассоциированы с СТГ-резистентностью (синдром Ларона). Фенотип по крайней мере частично определяется характером молекулярного дефекта. Так, у первого выявленного нами пациента имела место крайняя степень низкорослости (SDS роста –9,5), и при этом в гене GHR была обнаружена нонсенс-мутация R43X, которая предопределяла полное отсутствие рецептора [16]. В то же время в одном из более поздних наблюдений клинические и гормональные проявления синдрома Ларона были выражены менее значительно, а одна из двух выявленных в гене GHR гетерозиготных мутаций (c.1733delG p.S578fsX599), как было доказано экспериментами in vitro, не влияла на связывание лиганда (СТГ) с рецептором, а нарушала активацию одного из его внутриклеточных посредников — белка Stat5B [17]. К более редким формам низкорослости, связанной с резистентностью к ростовым факторам, относится резистентность к ИФР1. Данное заболевание, обусловленное гетерозиготной мутацией гена IGF1R, было диагностировано у пациента с семейной формой пре- и постнатальной задержки роста [18].
Ген RET также условно может быть отнесен к данной группе, так как кодируемый им белок представляет собой трансмембранный белок, близкий по структуре тирозинкиназным рецепторам. Исследование определенных участков этого гена рутинно проводится в ФГУ ЭНЦ всем пациентам с подозрением на синдромы множественных эндокринных неоплазий (МЭН) типов 2A и 2B, а также медуллярную тиреокарциному. Получаемые результаты согласуются с опубликованными данными: МЭН2B ассоциирован с мутацией M918Y, тогда как при МЭН2A чаще выявляются мутации в кодоне 634 (C634G и C634W).
Кодируемые генами, представленными в табл. 4,
Белок Pit1 (ген POU1F) был первым фактором транскрипции, для которого была доказана причинная связь с наследственным гипопитуитаризмом с множественным дефицитом гормонов аденогипофиза. Между тем, больные с дефектами гена POU1F (фенотип: выраженная степень низкорослости, дефицит СТГ, ТТГ и пролактина) выявляются нечасто, и среди наших наблюдений дефицит Pit1 был диагностирован лишь у 2 пациентов, у которых были обнаружены мутации E230K/c.778insA p.S260fsX284 [20] и R265W. Значительно чаще при наследственном гипопитуитаризме встречаются дефекты другого фактора транскрипции — PROP1 (предшественник Pit1), которые наследуются по аутосомно-рецессивному механизму и клинически проявляются дефицитом СТГ, ТТГ, пролактина, ЛГ, ФСГ и АКТГ. Дефекты гена PROP1 в нашей популяции являются самой частой причиной наследственного СТГ-дефицита, при этом в подавляющем большинстве случаев выявляются следующие две мутации: c.301—302delAG p.С102fsX109 и c.150delA p.С102fsX109 [21, 22].
Дефекты фактора DAX1 (ген NR0B1) ассоциированы с X-сцепленным вариантом врожденной гипоплазии надпочечников, проявляющимся надпочечниковой недостаточностью с сочетанным дефицитом глюко- и минералокортикоидов, а также гипогонадотропным гипогонадизмом. В раннем возрасте заболевание клинически имеет схожую картину с сольтеряющей формой ВДКН, что может приводить к неправильной диагностике. Следует, однако помнить, что симптомы гипокортицизма в раннем возрасте могут и отсутствовать. Так, в представленной нами серии наблюдений у 6 из 10 больных надпочечниковая недостаточность манифестировала в течение 1-го месяца жизни, тогда как у 4 больных в более позднем возрасте (в 1 случае в 13 лет) [23].
К факторам транскрипции относится и белок AIRE («аутоиммунный регулятор»), дефекты которого ассоциированы с моногенным аутоиммунным заболеванием — аутоиммунным полигландулярным синдромом I типа (АПС-1). Данный белок предположительно отвечает за экспрессию в клетках тимуса пула антигенов, являющихся специфичными для различных периферических тканей и органов. Такая экспрессия периферических белков в центральном органе иммунной системы необходима для элиминации («негативной селекции») популяции аутореактивных Т-клеток, способных в последующем взаимодействовать с данными периферическими антигенами и, как результат, вызывать аутоиммунную реакцию. АПС-1 классически проявляется триадой клинических признаков: гипопаратиреоз, кожно-слизистый кандидоз и первичный гипокортицизм. Реже встречаются другие аутоиммунные заболевания: алопеция, гипо- или гипертиреоз, нарушение кишечного всасывания, пернициозная анемия, СД, аутоиммунный гепатит и др. [24]. В российской популяции большинство случаев АПС-1 (около 70%) ассоциированы с мутацией R257X в гене AIRE [24,25].
Мутации гена HNF1A, кодирующего печеночный фактор транскрипции 1А, связаны с одной из моногенных форм СД — MODY3. Белок HNF1A экспрессирован в β-клетках поджелудочной железы, где он участвует в регуляции гена проинсулина, а также в печени и почках. По нашим наблюдениям, в российской популяции MODY3 является второй по распространенности нозологией в структуре MODY после MODY2. В обследованных нами семьях были выявлены следующие 3 мутации в гене HNF1A: c.1137delT p.S380fsX383, c.871insT p.P291fsX316, c.862delG p.291fsX342.
Белок StAR (острый стероидогенный регулятор) экспрессируется в ткани надпочечников и гонад, где он отвечает за перенос молекулы холестерина на внутреннюю мембрану митохондрии, на которой в последующем происходит синтез прегненолона с участием фермента P450scc (табл. 5).
У части больных с нефрогенным несахарным диабетом заболевание связано с дефектами гена AQP2 (табл. 5). Белок AQP2 (аквапорин-2) экспрессирован в собирательных трубочках почек, где он выполняет функцию водного канала, активируемого под воздействием вазопрессина. Нефрогенный несахарный диабет с аутосомно-рецессивным типом наследования был диагностирован нами у 6 детей, включая 2 сибсов [27], которые проходили обследование по поводу синдрома несахарного диабета, резистентного к терапии аналогами вазопрессина. В гене AQP2 было выявлено три ранее неизвестные гомозиготные мутации (G29V, R113C и D150E), одна из которых (D150E) была также характеризована функционально с использованием экспрессии in vitro [28]. Интересно, что мутация R113C была обнаружена в 3 неродственных семьях, относящихся к бурятской этнической группе, что позволяет говорить об эффекте основателя.
Ген MEN1 кодирует белок менин, функция которого остается до конца не известной (см. табл. 5). Предположительно белок является регуляторной молекулой, имеющей преимущественно ядерную локализацию и выполняющей роль ингибитора транскрипции ряда онкогенов. Мутации в гене MEN1 выявляются при синдроме множественных эндокринных неоплазий I типа (МЭН1) — заболевании с доминантным наследованием, для которого характерно наличие нескольких эндокринных опухолей, в числе которых аденомы паращитовидных желез, опухоли поджелудочной железы, аденомы гипофиза и др. При обследовании нами 46 больных с синдромом МЭН1, диагностированного клинически на основании сочетания первичного гиперпаратиреоза и дополнительно одного или нескольких компонентов синдрома, мутации в гене MEN1 были выявлены у 32 обследованных (70%). Болезнь Гиппеля—Линдау (БГЛ) — еще одно доминантно-наследуемое заболевание, проявляющееся множественными опухолями, в том числе феохромоцитомой. В основе молекулярного механизма развития заболеваний лежат герминативные мутации в гене VHL (см. табл. 5). Кодируемый геном VHL одноименный белок обладает опухолесупрессивной активностью, которая предположительно реализуется за счет его участия в процессе деградации факторов клеточной пролиферации. Показаниями для анализа гена VHL при феохромоцитоме являются выявление других компонентов БГЛ (гемангиобластомы сетчатки и мозжечка, светлоклеточная карцинома и кисты почки), а также молодой возраст и наличие множественных опухолей с преобладающей секрецией норадреналина. Среди обследованных нами больных были выявлены следующие мутации в гене VHL: L163R, D121N, X214W, R161Q, R167W.
Гены KCNJ11 и ABCC8 кодируют, соответственно, Kir6.2- и SUR1-субъединицы АТФ-зависимого калиевого канала, играющего важную роль в регуляции секреции инсулина β-клеткой поджелудочной железы (см. табл. 5). В зависимости от характера мутации в какой-либо из субъединиц дефект канала может проявляться как повышенной секрецией инсулина (при инактивирующих мутациях), так и его дефицитом (при активирующих мутациях). Особый практический интерес представляет выявление случаев СД, обусловленного активирующими мутациями генов KCNJ11 и ABCC8, так как верификация данного подтипа заболевания предопределяет возможность эффективного лечения препаратами сульфонилмочевины. Нами выявлено 11 пациентов с активирующими мутациями в гене KCNJ11 (R201H, R201C, С42R, L164P, V59M, V69M, V231—Q235delVPLHQ и D323Y) и 2 пациента с мутациями в гене ABCC8 (D209E, D212G) [29]. Возраст пациентов на момент манифестации СД варьировал от 5 дней до 6 мес. В 10 из 13 случаев был осуществлен успешный перевод с инсулинотерапии на препараты сульфонилмочевины.
Таким образом, представленные случаи указывают на наличие широкого спектра наследственной эндокринной патологии и в то же время иллюстрируют возможности молекулярной верификации ее этиологии. Выяснение причинно-следственной связи заболевания с конкретным молекулярным дефектом имеет большое практическое и научное значение.
Очевидно, что при наследственных эндокринных заболеваниях ДНК-анализ является завершающим, наиболее точным, а порой и единственным методом диагностики. Последнее относится прежде всего к нозологиям, при которых отсутствуют надежные гормональные или биохимические маркеры заболевания (например, липоидная гиперплазия надпочечников, нефрогенный несахарный диабет, АПС-1, мнимый избыток минералокортикоидов и др.). Имея информацию об определенном дефекте гена в семье, обследование родственников дает возможность либо полностью исключить у них риск развития данной патологии, либо установить факт носительства мутации и/или диагностировать заболевание на доклинической стадии. Последнее особенно актуально при заболеваниях с поздней манифестацией и медленным прогрессированием симптоматики (например, АПС-1, MODY, некоторые формы гипопитуитаризма, эндокринные опухоли), при которых доклиническая диагностика позволяет своевременно начать терапию, а иногда и использовать превентивные методы (профилактическая тиреоидэктомия при мутациях в гене RET).
В ряде случаев информация о конкретной мутации делает возможным прогнозировать течение заболевания. Последнее время это широко используется, например у новорожденных с дефицитом 21-гидроксилазы, когда заместительная гормональная терапия начинается уже на доклинической стадии заболевания, и характер молекулярного дефекта является порой единственным показателем, который используется для оценки потенциальной тяжести синдрома потери соли.
Нередко молекулярный диагноз существенно влияет на тактику ведения больного. Например, выявление мутации гена PROP1 у пациента с гипопитуитаризмом и интраселлярным образованием в большинстве случаев исключает необходимость нейрохирургического лечения и позволяет продолжать заместительную терапию препаратами СТГ. Безусловно, одним из самых ярких примеров возможности коррекции лечения с учетом специфики молекулярного дефекта является замена инсулинотерапии на препараты сульфонилмочевины у больных СД, обусловленных дефектами АТФ-зависимых калиевых каналов. В данном случае не только факт выявления мутации гена (KCNJ11 или ABCC8), но и конкретная позиция измененного аминокислотного остатка определяют возможность перехода на пероральные сахарпонижающие препараты.
ДНК-анализ применяется не только в диагностике и лечении наследственных эндокринопатий, но и при их профилактике. При наличии случаев тяжелой моногенной патологии в семье молекулярный диагноз должен учитываться при планировании беременности. Здесь речь может идти как о пренатальной диагностике, так и о преимплантационной диагностике при использовании ВРТ.
Наконец молекулярно-генетические исследования могут внести существенный вклад в изучение этиопатогенеза заболевания и биологической функции белков. Так, например функциональная характеристика выявленной нами мутации в C-концевой части рецептора СТГ у пациента с синдромом Ларона (c.1733delG p.S578fsX599) продемонстрировала связь данного дефекта с нарушением активации внутриклеточного посредника Stat5B, что подтверждало роль последнего в активации системы СТГ-ИФР1. Следует, однако, отметить, что до сих пор причины и механизмы развития ряда эндокринных заболеваний остаются не до конца изученными, и ожидаемое широкое внедрение в практику новых технологий молекулярно-генетического анализа, включая высокопроизводительные системы параллельного секвенирования, безусловно, позволит добиться дальнейшего прогресса в данной области.
Автор признателен эндокринологам, которые принимали участие в обследовании и лечении представленных больных, и чье клиническое мышление явилось основой для постановки молекулярного диагноза: А.Г. Акоповой (Новосибирск), Н.Ю. Арбатской (Москва), А.А. Баканову (Барнаул), Е.Б. Башниной (Санкт-Петербург), Д.Г. Бельцевичу (Москва), А.И. Васильеву (Москва), А.В. Витебской (Москва), И.Э. Волкову (Москва), Л.К. Дзерановой (Москва), Н.А. Зубковой (Москва), Н.Ю. Калинченко (Москва), С.Ю. Калинченко (Москва), М.Е. Карманову (Москва), М.А. Каревой (Москва), А.В. Кияеву (Екатеринбург), М.А. Коваренко (Новосибирск), А.А. Колодкиной (Москва), Э.С. Кузнецовой (Москва), О.А. Малиевскому (Уфа), С.Г. Малимон (Пермь), М.А. Меликян (Москва), Е.Г. Михайловой (Самара), Е.В. Нагаевой (Москва), Е.М. Орловой (Москва), Е.Е. Петряйкиной (Москва), В.Ф. Пилютику (Москва), Л.Я. Рожинской (Москва), И.Г. Рыбкиной (Москва), Т.В. Семичевой (Москва), О.В. Стотиковой (Москва), И.С. Тебиевой (Владикавказ), Ю.В. Тихонович (Москва), И.Н. Ульяновой (Москва), И.Р. Хамагановой (Улан-Удэ), О.В. Фофановой (Москва), О.А. Чикулаевой (Москва), Л.Г. Черных (Екатеринбург), И.Ю. Черняк (Краснодар), Л.А. Шапкиной (Владивосток). Особая благодарность проф. П.М. Рубцову (Институт молекулярной биологии им. В.А. Энгельгардта, Москва), чья помощь и советы были и остаются чрезвычайно ценными для становления и развития молекулярной диагностики в ФГУ ЭНЦ.