The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Zibirov R.F.

A.F. Tsyb Medical Radiology Research Center, Branch, National Medical Radiology Research Center, Ministry of Health of the Russia, Obninsk, Kaluga Region, Russia

Mozerov S.A.

A.F. Tsyb Medical Radiology Research Center, Branch, National Medical Radiology Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia

Characterization of the tumor cell microenvironment

Authors:

Zibirov R.F., Mozerov S.A.

More about the authors

Journal: P.A. Herzen Journal of Oncology. 2018;7(2): 67‑72

Read: 5802 times


To cite this article:

Zibirov RF, Mozerov SA. Characterization of the tumor cell microenvironment. P.A. Herzen Journal of Oncology. 2018;7(2):67‑72. (In Russ.)
https://doi.org/10.17116/onkolog20187267-72

Recommended articles:
Patterns of CAF expression in tumors of the geni­tourinary system. Russian Journal of Archive of Pathology. 2024;(6):28-35

References:

  1. Kaprin AD, Starinskii VV, Petrova GV, eds. Status of oncological care for the population of Russia in 2015 (Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2015). Moscow: MNIOI im. P.A. Gertsena - filial FGBU NMIRTs Minzdrava Rossii; 2016. (In Russ.)
  2. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4(1):66-83. https://doi.org/10.7150/jca.5112
  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. https://doi.org/10.1016/j.cell.2011.02.013
  4. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer — related inflammation. Nature. 2008;454(7203):436-444. https://doi.org/10.1038/nature07205
  5. Al-Zhoughbi W, Huang J, Paramasivan GS. Tumor macroenvironment and metabolism. Semin Oncol. 2014;41(2):281-295. https://doi.org/10.1053/j.seminoncol.2014.02.005
  6. Weinberg RA. Twisted epithelial-mesenchymal transition blocks senescence. Nat Cell Biol. 2008;10(9):1021-1023. https://doi.org/10.1038/ncb0908-1021
  7. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2014;25(4):198-213. https://doi.org/10.1016/j.tcb.2014.11.006
  8. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411(6835):375-379. https://doi.org/10.1038/35077241
  9. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.
  10. Joyce J A, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239-252. https://doi.org/10.1038/nrc2618
  11. Rivera C, Venegas B. Histological and molecular aspects of oral squamous cell carcinoma. Oncol Lett. 2014;8(1):7-11. https://doi.org/10.3892/ol.2014.2103
  12. Sung WW, Wang YC, Lin PL, Cheng YW, Chen CY, Wu TC, Lee H. IL-10 promotes tumor aggressiveness via upregulation of CIP2A transcription in lung adenocarcinoma. Clin Cancer Res. 2013;19(15):4092-4103. https://doi.org/10.1158/1078-0432.CCR-12-3439
  13. Balermpas P, Rödel F, Weiss C, Rödel C, Fokas E. Tumor infiltrating lymphocytes favor the response to chemoradiotherapy of head and neck cancer. Oncoimmunology. 2014;3(1):e27403. https://doi.org/10.4161/onci.27403
  14. Helal DS, Wahba OM. Immunohistochemical study of CD68, CD3 and Bcl-2 and their Role in Progression and prognosis of head and neck squamous cell carcinoma. Arch Cancer Res. 2016;4:1-11.
  15. Denkert C, Loibl S, Noske A, Roller M, Müller B.M, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, von Törne C, Weichert W, Engels K, Solbach C, Schrader I, Dietel M, von Minckwitz G. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105-113. https://doi.org/10.1200/JCO.2009.23.7370
  16. Allen CT, Judd NP, Bui JD, Uppaluri R. The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope. 2012;122(1):144-157. https://doi.org/10.1002/lary.21913
  17. Katou F, Ohtani H, Watanabe Y, Nakayama T, Yoshie O, Hashimoto K. Differing phenotypes between intraepithelial and stromal lymphocytes in early-stage tongue cancer. Cancer Res. 2007;67(23):11195-1201. https://doi.org/10.1158/0008-5472.CAN-07-2637
  18. Kesselring R, Thiel A, Pries R, Trenkle T, Wollenberg B. Human Th17 cells can be induced through head and neck cancer and have a functional impact on HNSCC development. Br J Cancer. 2010;103(8):1245-1254. https://doi.org/10.1038/sj.bjc.6605891
  19. Wilke CM, Wu K, Zhao E, Wang G, Zou W. Prognostic significance of regulatory T cells in tumor. Int J Cancer. 2010;127(4):748-758. https://doi.org/10.1002/ijc.25464
  20. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, Boehm D, Gebhard S, Petry I, Lebrecht A, Cadenas C, Marchan R, Stewart JD, Solbach C, Holmberg L, Edlund K, Kultima HG, Rody A, Berglund A, Lambe M, Isaksson A, Botling J, Karn T, Müller V, Gerhold-Ay A, Cotarelo C, Sebastian M, Kronenwett R, Bojar H, Lehr HA, Sahin U, Koelbl H, Gehrmann M, Micke P, Rahnenführer J, Hengstler JG. A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res. 2012;18(9):2695-2703. https://doi.org/10.1158/1078-0432.CCR-11-2210
  21. Zhou X, Su YX, Lao XM, Liang YJ, Liao GQ. CD19(+) IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+) Foxp3(+) regulatory T cells. Oral Oncol. 2016;53:27-35. https://doi.org/10.1016/j
  22. Berntsson J, Nodin B, Eberhard J, Micke P, Jirström K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer. 2016;139(5):1129-1139. https://doi.org/10.1002/ijc.30138
  23. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH. CD20+ tumor-infiltrating lymphocytes have an atypical CD27— memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res. 2012;18(12):3281-3292. https://doi.org/10.1158/1078-0432.CCR-12-0234
  24. Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, Bluth MH. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol. 2008;153(3):401-409. https://doi.org/10.1111/j.1365-2249.2008.03726.x
  25. Woo JR, Liss MA, Muldong MT, Palazzi K, Strasner A, Ammirante M, Varki N, Shabaik A, Howell S, Kane CJ, Karin M, Jamieson CA. Tumor infiltrating B-cells are increased in prostate cancer tissue. J Transl Med. 2014;12:30. https://doi.org/10.1186/1479-5876-12-30
  26. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Möller P, Schrezenmeier H, Jahrsdörfer B. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 2013;73(8):2468-2479. https://doi.org/10.1158/0008-5472.CAN-12-3450
  27. Mauri C, Ehrenstein MR. The ‘short’ history of regulatory B cells. Trends Immunol. 2008;29:34-40. https://doi.org/10.1016/j.it.2007.10.004
  28. Ammendola M, Sacco R, Sammarco G, Luposella M, Patruno R, Gadaleta CD, Sarro GD, Ranieri G. Mast cell-targeted strategies in cancer therapy. Transfus Med Hemother. 2016;43(2):109-113. https://doi.org/10.1159/000444942
  29. Singh VS, Ramesh V, Balamurali PD. The relevance of mast cells in oral squamous cell carcinoma. J Clin Diagn Res. 2012;6(10):1803-1807. https://doi.org/10.7860/JCDR/2012/4503.2616
  30. Bhushan S, Sriram G, Saraswathi TR, Sivapathasundharam B. The immunohistochemical evaluation of the mast cells and the angiogenesis in oral squamous cell carcinoma. Indian J Dent Res. 2010;21(2):260-265. https://doi.org/10.4103/0970-9290.66655
  31. Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000Prime Rep. 2015;7:09;eCollection 2015. https://doi.org/10.12703/P7-09.
  32. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30(1):45-60. https://doi.org/10.1007/s10555-011-9286-z
  33. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231-237. https://doi.org/10.1016/j.coi.2010.01.009
  34. Costa NL, Valadares MC, Souza PP, Mendonça EF, Oliveira JC, Silva TA, Batista AC. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 2013;49(3):216-223. https://doi.org/10.1016/j.oraloncology.2012.09.012
  35. Kikuchi K, Kusama K, Sano M, Nakanishi Y, Ishige T, Ohni S, Oinuma T, Nemoto N. Vascular endothelial growth factor and dendritic cells in human squamous cell carcinoma of the oral cavity. Anticancer Res. 2006;26(3А):1833-1848.
  36. Mori K, Hiroi M, Shimada J, Ohmori Y. Infiltration of M2 tumor-associated macrophages in oral squamous cell carcinoma correlates with tumor malignancy. Cancers (Basel). 2011;3(4):3726-3739. https://doi.org/10.3390/cancers3043726
  37. Lu CF, Huang CS, Tjiu JW, Chiang CP. Infiltrating macrophage count: a significant predictor for the progression and prognosis of oral squamous cell carcinomas in Taiwan. Head Neck. 2010;32(1):18-25. https://doi.org/10.1002/hed.21138
  38. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284(49):34342-34354. https://doi.org/10.1074/jbc.M109.042671
  39. Moussai D, Mitsui H, Pettersen JS. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol. 2011;131(1):229-236. https://doi.org/10.1038/jid.2010.266
  40. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011;25(23):2465-2479. https://doi.org/10.1101/gad.180331.111
  41. Wheeler SE, Shi H, Lin F, Dasari S, Bednash J, Thorne S, Watkins S, Joshi R, Thomas SM. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head Neck. 2014;36(3):385-392. https://doi.org/10.1002/hed.23312
  42. Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta. 2013;1832(7):1070-1078. https://doi.org/10.1016/j.bbadis.2012.10.013
  43. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31(1-2):195-208. https://doi.org/10.1007/s10555-011-9340-x
  44. Kamińska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, Czarnecka AM. The role of the cell-cell interactions in cancer progression. J Cell Mol Med. 2015;19(2):283-296. https://doi.org/10.1111/jcmm.12408
  45. Bello IO, Vered M, Dayan D, Dobriyan A, Yahalom R, Alanen K, Nieminen P, Kantola S, Läärä E, Salo T. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral Oncol. 2011;47(1):33-38.
  46. Koontongkaew S, Amornphimoltham P, Monthanpisut P, Saensuk T, Leelakriangsak M. Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells. Med Oncol. 2012;29(2):690-703. https://doi.org/10.1007/s12032-011-9871-6
  47. Chen SF, Nieh S, Jao SW, Wu MZ, Liu CL, Chang YC, Lin YS. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol. 2013;231(2):180-189. https://doi.org/10.1002/path.4226
  48. Desmoulière A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol. 2004;48(5-6):509-517. https://doi.org/10.1387/ijdb.041802ad
  49. Vered M, Shohat I, Buchner A, Dayan D. Myofibroblasts in stroma of odontogenic cysts and tumors can contribute to variations in the biological behavior of lesions. Oral Oncol. 2005;41(10):1028-1033. https://doi.org/10.1016/j.oraloncology.2005.06.011
  50. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228(7):1404-1412. https://doi.org/10.1002/jcp.24260
  51. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012;33(5):949-955. https://doi.org/10.1093/carcin/bgs123
  52. Magalhaes MAO, Glogauer JE, Glogauer M. Neutrophils and oral squamous cell carcinoma: lessons learned and future directions. J Leukocyte Biol. 2014;96(5):1-8. https://doi.org/10.1189/jlb.4RU0614-294R
  53. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, Ferri LE. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 2012;72(16):3919-3927. https://doi.org/10.1158/0008-5472.CAN-11-2393
  54. Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z, Fridlender ZG. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 — a new mechanism of impaired antitumor immunity. Int J Cancer. 2014;135(5):1178-1186. https://doi.org/10.1158/0008-5472.CAN-11-2393
  55. Martinelli-Klay CP, Mendis B.RRN, Lombardi T. Eosinophils and oral squamous cell carcinoma: a short review. J Oncol. 2009;2009:310132. https://doi.org/10.1155/2009/310132
  56. Ellyard JI, Simson L, Parish CR. Th2-mediated antitumour immunity: friend or foe? Tissue Antigens. 2007;70(1):1-11. https://doi.org/10.1111/j.1399-0039.2007.00869.x
  57. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226(1):205-218. https://doi.org/10.1111/j.1600-065X.2008.00706.x
  58. Tian M, Schiemann WP. The TGFβ paradox in human cancer: an update. Future Oncol. 2009;5(2):259-271. https://doi.org/10.2217/14796694.5.2.259
  59. Tadbir AA, Ashraf MJ, Sardari Y. Prognostic significance of stromal eosinophilic infiltration in oral squamous cell carcinoma. J Craniofac Surg. 2009;20(2):287-289. https://doi.org/10.1097/SCS.0b013e318199219b
  60. Campos MS, Neiva KG, Meyers KA, Krishnamurthy S, Nor JE. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells. Oral Oncol. 2012;48(1):26-32. https://doi.org/10.1016/j.oraloncology.2011.09.010
  61. Yang X, Zhai N, Sun M, Zhao Z, Yang J, Chen K, Zhang H. Influence of lymphatic endothelial cells on proliferation and invasiveness of esophageal carcinoma cells in vitro and lymphangiogenesis in vivo. Med Oncol. 2015;32(8):222. https://doi.org/10.1007/s12032-015-0662-3
  62. Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ. Pericytes on the tumor vasculature: jekyll or hyde? Cancer Microenvironment. 2013;6(1):1-17. https://doi.org/10.1007/s12307-012-0102-2
  63. Harris AL. Hypoxia — a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38-47. https://doi.org/10.1038/nrc704
  64. Lugassy C, Peault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res. 2013;26(5):746-754. https://doi.org/10.1111/pcmr.12120
  65. Navarro R, Compte M, Álvarez-Vallina L, Sanz L. Immune regulation by pericytes: modulating innate and adaptive immunity. Front Immunol. 2016;7:480. https://doi.org/10.3389/fimmu.2016.00480

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.