The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gapel’chenkova T.V.

The Federal Budgetary Institution of Science «State Research Center for Applied Microbiology and Biotechnology» of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Lipatnikova N.A.

The Federal Budgetary Institution of Science «State Research Center for Applied Microbiology and Biotechnology» of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Trunyakova A.S.

The Federal Budgetary Institution of Science «State Research Center for Applied Microbiology and Biotechnology» of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Kopylov P.Kh.

State Research Center for Applied Microbiology and Biotechnology

Dentovskaya S.V.

The Federal Budgetary Institution of Science «State Research Center for Applied Microbiology and Biotechnology» of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Anisimov A.P.

The Federal Budgetary Institution of Science «State Research Center for Applied Microbiology and Biotechnology» of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Efficiency enhancement of a candidate plague vaccine by inclusion into its composition of two strains, attenuated at different molecular targets

Authors:

Gapel’chenkova T.V., Lipatnikova N.A., Trunyakova A.S., Kopylov P.Kh., Dentovskaya S.V., Anisimov A.P.

More about the authors

Read: 313 times


To cite this article:

Gapel’chenkova TV, Lipatnikova NA, Trunyakova AS, Kopylov PKh, Dentovskaya SV, Anisimov AP. Efficiency enhancement of a candidate plague vaccine by inclusion into its composition of two strains, attenuated at different molecular targets. Molecular Genetics, Microbiology and Virology. 2025;43(2):35‑42. (In Russ.)
https://doi.org/10.17116/molgen20254302135

Recommended articles:

References:

  1. Dentovskaya SV, Ivanov SA, Kopylov PKh, Shaikhutdinova RZ, Platonov ME, Kombarova TI, et al. Selective protective potency of Yersinia pestis ΔnlpD mutants. Acta Naturae. 2015;7(1):102-108.  https://doi.org/10.32607/20758251-2015-7-1-102-108
  2. Thomas S, ed. Vaccine Design: Methods and Protocols: Volume 1: Vaccines for Human Diseases. New York: Humana Press; 2016. https://doi.org/10.1007/978-1-4939-3387-7
  3. Pasteur L. De l’attenuation du virus du cholera des poules. Comptes rendus de l’Académie des Sciences (Paris). 1880;91:673-680. 
  4. Pasteur L, Chamberland CE, Roux E. Compte rendu sommaire des expériences faites à Pouilly-Le-Fort, près de Melun, sur la vaccination charbonneuse. Comptes rendus de l’Académie des Sciences (Paris). 1881;92:1378-1383.
  5. Pasteur L, Chamberland CE, Roux E. Nouvelle communication sur la rage. Comptes rendus de l’Académie des Sciences (Paris). 1884;98:457-463. 
  6. Korobkova EI. Zhivaya protivochumnaya vaktsina. M.: Medgiz; 1956. (In Russ.).
  7. Meyer KF. Experimental appraisal of antiplague vaccination with dead virulent and living avirulent plague bacilli. In: Abstracts: fourth International Congress on Tropical Medicine and Malaria. Washington, D.C.: U.S. Government Printing Office; 1948:16. PMID: 18872892 
  8. Meyer KF. Effectiveness of live or killed plague vaccines in man. Bull World Health Organ. 1970;42(5):653-666. 
  9. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. The Journal of Immunology. 2004;172(5):2731-2738. https://doi.org/10.4049/jimmunol.172.5.2731
  10. Anisimov AP, Dentovskaya SV, Panfertsev EA, Svetoch TE, Kopylov PKh, Segelke BW, et al. Amino acid and structural variability of Yersinia pestis LcrV protein. Infection, Genetics and Evolution. 2010;10(1):137-145.  https://doi.org/10.1016/j.meegid.2009.10.003
  11. Kopylov PKh, Platonov ME, Ablamunits VG, Kombarova TI, Ivanov SA, Kadnikova LA, et al. Yersinia pestis Caf1 protein: Effect of sequence polymorphism on intrinsic disorder propensity, serological cross-reactivity and cross-protectivity of isoforms. PLoS One. 2016;11(9):e0162308. https://doi.org/10.1371/journal.pone.0162308
  12. Anisimov NV, Kislichkina AA, Platonov ME, Evseeva VV, Kadnikova LA, Lipatnikova NA, et al. On the origin of the hypervirulence of the plague pathogen. Medical parasitology and parasitic diseases. 2016;1:26-32. (In Russ.). PMID: 27029142 
  13. Sun W. Plague vaccines: status and future. In: Yang R, Anisimov A, eds. Yersinia pestis: Retrospective and Perspective. Dordrecht: Springer; 2016:313-360.  https://doi.org/10.1007/978-94-024-0890-4_12
  14. Anisimov AP. Molecular and genetic mechanisms of formation and functional significance of Yersinia pestis capsule. Obolensk; 1999. (In Russ.). https://doi.org/10.13140/2.1.4919.8088
  15. Abgaryan GP. Characteristics of some strains of the plague microbe isolated from common voles in the Armenian Highland. Saratov; 1966. (In Russ.).
  16. Anisimov AP, Krasil’nikova EA, Vagaiskaya AS, Solomentsev VI, Kopylov PK, Ivanov SA, et al. Yersinia pestis vole’s strains: taxonomy, phylogeography, polymorphisms of pathogenicity factors and selective virulence. Russian Journal of Infection and Immunity. 2018;8(4):554.  https://doi.org/10.15789/2220-7619-2018-4-5.1
  17. Ageev SA, Shaikhutdinova RZ, Bakhteeva IV, Titareva GM, Kombarova TI, Dentovskaya SV, Anisimov AP. Construction of candidate Yersinia pestis vaccine strains with reduced reactogenicity. Problemy Osobo Opasnykh Infektsii. 2011;1:70-73. (In Russ.). https://doi.org/10.21055/0370-1069-2011-1(107)-70-73
  18. Kislichkina AA, Krasil’nikova EA, Platonov ME, Skryabin YP, Sizova AA, Solomentsev VI, et al. Whole-genome assembly of Yersinia pestis 231, the Russian reference strain for testing plague vaccine protection. Microbiology Resource Announcements. 2021;10(5):e01373-20.  https://doi.org/10.1128/mra.01373-20
  19. Williamson ED, Vesey PM, Gillhespy KJ, Eley SM, Green M, Titball RW. An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model. Clinical and Experimental Immunology. 1999; 116(1):107-114.  https://doi.org/10.1046/j.1365-2249.1999.00859.x
  20. Finney DJ. Statistical method in biological assay. London, England: Charles Griffin; 1978.
  21. Golding H, Khurana S, Zaitseva M. What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species-independent correlates of protection. Cold Spring Harbor Perspectives in Biology. 2018;10(4):a028902. https://doi.org/10.1101/cshperspect.a028902
  22. Gapel’chenkova TV, Shaikhutdinova RZ, Trunyakova AS, Svetoch TE, Kombarova TI, Platonov ME, et al. Dynamics of antibody response to Yersinia pestis proteins in plague affected guinea pigs. Problemy Osobo Opasnykh Infektsii. 2022;4:50-56. (In Russ.). https://doi.org/10.21055/0370-1069-2022-4-50-56
  23. Li B, Jiang L, Song Q, Yang J, Chen Z, Guo Z, et al. Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infection and Immunity. 2005;73(6):3734-3739. https://doi.org/10.1128/IAI.73.6.3734-3739.2005
  24. Li B, Zhou D, Wang Z, Song Z, Wang H, Li M, et al. Antibody profiling in plague patients by protein microarray. Microbes and Infection. 2008; 10(1):45-51.  https://doi.org/10.1016/j.micinf.2007.10.003
  25. Li B, Du C, Zhou L, Bi Y, Wang X, Wen L, et al. Humoral and cellular immune responses to Yersinia pestis infection in long-term recovered plague patients. Clinical and vaccine Immunology. 2012;19(2):228-234.  https://doi.org/10.1128/CVI.05559-11
  26. Sun W, Singh AK. Plague vaccine: recent progress and prospects. npj Vaccines. 2019;4:11.  https://doi.org/10.1038/s41541-019-0105-9
  27. Nazarova EL, Dyatlov IA, Pozdeev NM, Demyanova VT, Paramonov IV, Rylov AV, et al. Genetic markers of immune response to Yersinia pestis F1 and V antigens-loaded microspheresvaccine against plague. Russian Biomedical Research. 2017;2(1):19-28.  https://www.researchgate.net/profile/Andrey_Anisimov/publication/318283908_Genetic_markers_of_immune_response_to_Yersinia_pestis_F1_and_V_antigens
  28. Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, et al. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Frontiers in Immunology. 2024;15:1397579. https://doi.org/10.3389/fimmu.2024.1397579
  29. Cote CK, Biryukov SS, Klimko CP, Shoe JL, Hunter M, Rosario-Acevedo R, et al. Protection elicited by attenuated live Yersinia pestis vaccine strains against lethal infection with virulent Y. pestis. Vaccines 2021;9(2):161.  https://doi.org/10.3390/vaccines9020161
  30. Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Molecular Microbiology. 2002;46(2):349-354.  https://doi.org/10.1046/j.1365-2958.2002.03159.x
  31. Ginsburg N.N. Zhivye vaktsiny (Istoriya, elementy teorii, praktika). M.: Meditsina; 1969. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.