The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ryabova E.I.

Federal State Budget Institution «National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya»;
Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Scriabin

Derkaev A.A.

Federal State Budget Institution «National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya»

Pimenov N.V.

Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Scriabin

Esmagambetov I.B.

Federal State Budget Institution «National Research Center for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya»

Use of recombinant adeno-associated virus for passive immunization and protection against infectious diseases

Authors:

Ryabova E.I., Derkaev A.A., Pimenov N.V., Esmagambetov I.B.

More about the authors

Read: 1408 times


To cite this article:

Ryabova EI, Derkaev AA, Pimenov NV, Esmagambetov IB. Use of recombinant adeno-associated virus for passive immunization and protection against infectious diseases. Molecular Genetics, Microbiology and Virology. 2024;42(1):25‑33. (In Russ.)
https://doi.org/10.17116/molgen20244201125

Recommended articles:

References:

  1. Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nature medicine. 2021;27(4):591-600.  https://doi.org/10.1038/s41591-021-01301-0
  2. Courtillon C, Allée C, Amelot M, Keita A, Bougeard S, Härtle S, et al. Blood B Cell Depletion Reflects Immunosuppression Induced by Live-Attenuated Infectious Bursal Disease Vaccines. Frontiers in Veterinary Science. 2022;9:871549. https://doi.org/10.3389/fvets.2022.871549
  3. Malik JA, Ahmed S, Mir A, Shinde M, Bender O, Alshammari F, et al. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. Journal of infection and public health. 2022;15(2):228-240.  https://doi.org/10.1016/j.jiph.2021.12.014
  4. Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. npj Vaccines. 2022;7(1):75.  https://doi.org/10.1038/s41541-022-00503-y
  5. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology. 2021;21(4):195-197.  https://doi.org/10.1038/s41577-021-00526-x
  6. Niebel D, Novak N, Wilhelmi J, Ziob J, Wilsmann-Theis D, Bieber T, et al. Cutaneous adverse reactions to COVID-19 vaccines: insights from an immuno-dermatological perspective. Vaccines. 2021;9(9):944.  https://doi.org/10.3390/vaccines9090944
  7. Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, et al. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. European Journal of Cancer. 2020;128:107-118.  https://doi.org/10.1016/j.ejca.2020.01.005
  8. Wilken L, McPherson A. Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections. International reviews of immunology. 2018;37(1):69-76.  https://doi.org/10.1080/08830185.2017.1397657
  9. Laursen NS, Friesen RH, Zhu X, Jongeneelen M, Blokland S, Vermond J, et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science. 2018;362(6414):598-602.  https://doi.org/10.1126/science.aaq0620
  10. Limberis MP, Wilson JM. Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proceedings of the National Academy of Sciences. 2006;103(35):12993-12998. https://doi.org/10.1073/pnas.0601433103
  11. Limberis MP, Adam VS, Wong G, Gren J, Kobasa D, Ross TM, et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Science translational medicine. 2013;5(187):187ra72. https://doi.org/10.1126/scitranslmed.3006299
  12. Adam VS, Crosariol M, Kumar S, Ge MQ, Czack SE, Roy S, et al. Adeno-associated virus 9-mediated airway expression of antibody protects old and immunodeficient mice against influenza virus. Clinical and Vaccine Immunology. 2014;21(11):1528-1533. https://journals.asm.org/doi.org/full/10.1128/cvi.00572-14
  13. Limberis M, Anson DS, Fuller M, Parsons DW. Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Human gene therapy. 2002;13(16):1961-1970. https://doi.org/10.1089/10430340260355365
  14. Del Rosario JM, Smith M, Zaki K, Temperton N, Takeuchi Y, Hufton SE. Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Frontiers in Immunology. 2020;11:527785. https://doi.org/10.3389/fimmu.2020.00627
  15. Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature biotechnology. 2013;31(7):647-652.  https://doi.org/10.1038/nbt.2618
  16. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310(5748):676-679.  https://doi.org/10.1126/science.1118391
  17. Martellucci CA, Flacco ME, Cappadona R, Bravi F, Mantovani L, Manzoli L. SARS-CoV-2 pandemic: An overview. Advances in biological regulation. 2020;77:100736. https://doi.org/10.1016/j.jbior.2020.100736
  18. Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, et al. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Molecular Therapy. 2023;31(11):3322-3336. https://doi.org/10.1016/j.ymthe.2023.09.002
  19. Favorskaya IA, Shcheblyakov DV, Esmagambetov IB, Dolzhikova IV, Alekseeva IA, Korobkova AI, et al. Single-domain antibodies efficiently neutralize SARS-CoV-2 variants of concern. Frontiers in Immunology. 2022;13:822159. https://doi.org/10.3389/fimmu.2022.822159
  20. Esmagambetov IB, Ryabova EI, Derkaev AA, Shcheblyakov DV, Dolzhikova IV, Favorskaya IA, et al. rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19. Frontiers in Immunology. 2023;14:1129245. https://doi.org/10.3389/fimmu.2023.1129245
  21. Newsletter — Global HIV Statistics. The link is active on 02/05/2024 (In Russ.). https://www.unaids.org/ru/resources/fact-sheet
  22. Tieu HV, Rolland M, Hammer SM, Sobieszczyk ME. Translational research insights from completed HIV vaccine efficacy trials. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2013;63:S150-S154. https://doi.org/10.1097/QAI.0b013e31829a3985
  23. Caskey M. Broadly-neutralizing antibodies (bNAbs) for the treatment and prevention of HIV infection. Current Opinion in HIV and AIDS. 2020;15(1):49.  https://doi.org/10.1097/COH.0000000000000600
  24. Burton DR, Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annual review of immunology. 2016;34:635-659.  https://doi.org/10.1146/annurev-immunol-041015-055515
  25. Kong R, Xu K, Zhou T, Acharya P, Lemmin T, Liu K, et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science. 2016;352(6287):828-833.  https://doi.org/10.1126/science.aae0474
  26. Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nature medicine. 2009;15(8):901-906.  https://doi.org/10.1038/nm.1967
  27. Fuchs SP, Martinez-Navio JM, Piatak Jr M, Lifson JD, Gao G, Desrosiers RC. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS pathogens. 2015;11(8):e1005090. https://doi.org/10.1371/journal.ppat.1005090
  28. Gardner MR, Kattenhorn LM, Kondur HR, Von Schaewen M, Dorfman T, Chiang JJ, et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature. 2015;519(7541):87-91.  https://doi.org/10.1038/nature14264
  29. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481(7379):81-84.  https://doi.org/10.1038/nature10660
  30. Saunders KO, Wang L, Joyce MG, Yang ZY, Balazs AB, Cheng C, et al. Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects nonhuman primates from mucosal simian-human immunodeficiency virus infection. Journal of virology. 2015;89(16):8334-8345. https://doi.org/10.1128/jvi.00908-15
  31. Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Annals of internal medicine. 2000;133(1):21-30.  https://doi.org/10.7326/0003-4819-133-1-200007040-00004
  32. Shaldina MV, Pirogova IA. Antiretroviral therapy as the main method of treating HIV infection. Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region. 2017;2(4 (19)):71-74. (In Russ.). https://cyberleninka.ru/article/n/antiretrovirusnaya-terapiya-kak-osnovnoy-metod-lecheniya-vich-infektsii
  33. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013;503(7475):224-228.  https://doi.org/10.1038/nature12744
  34. Lovelace SE, Hait SH, Yang ES, Fox ML, Liu C, Choe M, et al. Anti-viral efficacy of a next-generation CD4-binding site bNAb in SHIV-infected animals in the absence of anti-drug antibody responses. Iscience. 2022;25(10):105067. https://doi.org/10.1016/j.isci.2022.105067
  35. Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a «single-shot» functional cure for HIV infection. Journal of Virus Eradication. 2023;9(1):100316. https://doi.org/10.1016/j.jve.2023.100316
  36. Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR, Nabel GJ, et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine. 2014;211(10):2061-2074. https://doi.org/10.1084/jem.20132494
  37. Dempsey LA. Passive protection. Nature Immunology. 2015;16(6):590-590.  https://doi.org/10.1038/ni.3186
  38. Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018;561(7724):479-484.  https://doi.org/10.1038/s41586-018-0531-2
  39. Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 2014;158(6):1243-1253. https://doi.org/10.1016/j.cell.2014.08.023
  40. von Bredow B, Arias JF, Heyer LN, Moldt B, Le K, Robinson JE, et al. Comparison of antibody-dependent cell-mediated cytotoxicity and virus neutralization by HIV-1 Env-specific monoclonal antibodies. Journal of virology. 2016;90(13):6127-6139. https://doi.org/10.1128/jvi.00347-16
  41. Bruel T, Guivel-Benhassine F, Amraoui S, Malbec M, Richard L, Bourdic K, et al. Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nature communications. 2016;7(1):10844. https://doi.org/10.1038/ncomms10844
  42. Martinez-Navio JM, Fuchs SP, Pantry SN, Lauer WA, Duggan NN, Keele BF, et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity. 2019;50(3):567-575.  https://doi.org/10.1016/j.immuni.2019.02.005
  43. Liberatore RA, Ho DD. The miami monkey: a sunny alternative to the berlin patient. Immunity. 2019;50(3):537-539.  https://doi.org/10.1016/j.immuni.2019.02.010
  44. Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature medicine. 2022;28(5):1022-1030. https://doi.org/10.1038/s41591-022-01762-x
  45. Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, et al. Successful treatment of Ebola virus—infected cynomolgus macaques with monoclonal antibodies. Science translational medicine. 2012;4(138):138ra81. https://doi.org/10.1126/scitranslmed.3003876
  46. Limberis MP, Tretiakova A, Nambiar K, Wong G, Racine T, Crosariol M, et al. Adeno-associated virus serotype 9-expressed ZMapp in mice confers protection against systemic and airway-acquired Ebola virus infection. The Journal of Infectious Diseases. 2016;214(12):1975-1979. https://doi.org/10.1093/infdis/jiw460
  47. Jacobs M, Rodger A, Bell DJ, Bhagani S, Cropley I, Filipe A, et al. Late Ebola virus relapse causing meningoencephalitis: a case report. The Lancet. 2016;388(10043):498-503.  https://doi.org/10.1016/S0140-6736(16)30386-5
  48. Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biology of reproduction. 2011;84(5):851-858.  https://doi.org/10.1095/biolreprod.110.087452
  49. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1—9 mediated gene expression and tropism in mice after systemic injection. Molecular therapy. 2008;16(6):1073-1080. https://doi.org/10.1038/mt.2008.76
  50. Jin JF, Zhu LL, Chen M, Xu HM, Wang HF, Feng XQ, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient preference and adherence. 2015;9:923-942.  https://doi.org/10.2147/PPA.S87271
  51. Van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular adeno-associated virus—mediated expression of monoclonal antibodies provides 100% protection against Ebola virus infection in mice. The Journal of infectious diseases. 2018;217(6):916-925.  https://doi.org/10.1093/infdis/jix644
  52. Motley MP, Banerjee K, Fries BC. Monoclonal antibody-based therapies for bacterial infections. Current opinion in infectious diseases. 2019;32(3):210.  https://doi.org/10.1097/QCO.0000000000000539
  53. Burmistrova DA, Tillib SV, Shcheblyakov DV, Dolzhikova IV, Shcherbinin DN, Zubkova OV, et al. Genetic passive immunization with adenoviral vector expressing chimeric nanobody-Fc molecules as therapy for genital infection caused by Mycoplasma hominis. PLoS One. 2016;11(3):e0150958. https://doi.org/10.1371/journal.pone.0150958
  54. DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Science Translational Medicine. 2014;6(262):262ra155. https://doi.org/10.1126/scitranslmed.3009655
  55. Guilleman MM, Stevens BA, Van Lieshout LP, Rghei AD, Pei Y, Santry LA, et al. AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Therapy. 2023;30(5):455-462.  https://doi.org/10.1038/s41434-021-00236-y
  56. Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, et al. Camelid VHHs fused to human fc fragments provide long term protection against botulinum neurotoxin a in mice. Toxins. 2019;11(8):464.  https://doi.org/10.3390/toxins11080464

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.