Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Зорина А.И.

ПАО «Артген биотех», ООО «Скинцел» (Сколково)

Зорин В.Л.

ПАО «Артген биотех», ООО «Скинцел» (Сколково)

Копнин П.Б.

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина»

Исаев А.А.

ПАО «Артген биотех», ООО «Скинцел» (Сколково)

Мантурова Н.Е.

ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России

Абдулаев Р.Т.

ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова»

Устюгов А.Ю.

ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова»

Актуальный статус биомедицинских продуктов для генной и клеточной терапии рецессивного дистрофического буллезного эпидермолиза (обзор, часть III)

Авторы:

Зорина А.И., Зорин В.Л., Копнин П.Б., Исаев А.А., Мантурова Н.Е., Абдулаев Р.Т., Устюгов А.Ю.

Подробнее об авторах

Прочитано: 318 раз


Как цитировать:

Зорина А.И., Зорин В.Л., Копнин П.Б., Исаев А.А., Мантурова Н.Е., Абдулаев Р.Т., Устюгов А.Ю. Актуальный статус биомедицинских продуктов для генной и клеточной терапии рецессивного дистрофического буллезного эпидермолиза (обзор, часть III). Клиническая дерматология и венерология. 2025;24(4):395‑402.
Zorina AI, Zorin VL, Kopnin PB, Isaev AA, Manturova NE, Abdullaev RT, Ustyugov AYu. Current status of biomedical products for gene and cellular therapy of recessive dystrophic epidermolysis bullosa (review, part III). Russian Journal of Clinical Dermatology and Venereology. 2025;24(4):395‑402. (In Russ.)
https://doi.org/10.17116/klinderma202524041395

Рекомендуем статьи по данной теме:

Литература / References:

  1. Hou P-C, del Agua N, Lwin SM. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Therapeutics and Clinical Risk Management. 2023;14(19):455-473.  https://doi.org/10.2147/TCRM.S386923
  2. Chen M, Kasahara N, Keene DR, et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet. 2002;32:670-675.  https://doi.org/10.1038/ng1041
  3. Siprashvili Z, Nguyen NT, Bezchinsky MY, et al. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010;21:1299-1310.
  4. Titeux M, Pendaries V, Zanta-Boussif MA, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010;18(8):1509-1518. https://doi.org/10.1038/mt.2010.91
  5. Goto M, Sawamura D, Ito K, et al. Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol. 2006;126(4):766-772.  https://doi.org/10.1038/sj.jid.5700117
  6. Marinkovich MP, Tang JY. Gene Therapy for Epidermolysis Bullosa. J. Investig. Dermatol. 2019;139:1221-1226. https://doi.org/10.1016/j.jid.2018.11.036
  7. So JY, Nazaroff J, Iwummadu CV et al. Long-term safety and efficacy of gene-corrected autologous keratinocyte grafts for recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis. 2022;17(1):377.  https://doi.org/10.1186/s13023-022-02546-9
  8. Gaucher S, Lwin SM, Titeux M, et al. EBGene trial: patient preselection outcomes for the European GENEGRAFT ex vivo phase I/II gene therapy trial for recessive dystrophic epidermolysis bullosa. Br J Dermatol. 2020; 182(3):794-797.  https://doi.org/10.1111/bjd.18559
  9. Hovnanian A and GENEGRAFT Partners. Phase I/II ex vivo gene therapy clinical trial for recessive dystrophic epidermolysis bullosa using skin equivalent grafts genetically corrected with a COL7A1-encoding SIN retroviral vector (GENEGRAFT). Hum Gen Ther Clin. 2014;25:65-66. 
  10. Guide SV, Gonzalez ME, Bağcı S, et al. Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa. N Engl J Med. 2022; 387(24):2211-2219. https://doi.org/10.1056/NEJMoa2206663
  11. Gurevich I, Agarwal P, Zhang P, et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med. 2022;28(4):780-788.  https://doi.org/10.1038/s41591-022-01737-y
  12. Cohn HI, Teng JM. Advancement in management of epidermolysis bullosa. Curr. Opin. Pediatr. 2016;28(4):507-516 
  13. Subramaniam KS, Antoniou MN, McGrath JA et al. The potential of gene therapy for recessive dystrophic epidermolysis bullosa. British Journal of Dermatology. 2022;184(4):609-619.  https://doi.org/10.1111/bjd.20910
  14. De Rosa L, Latella MC, Seconetti AS, et al. Toward combined cell and gene therapy for genodermatoses. Cold Spring Harb Perspect Biol. 2020;12(5): a035667. https://doi.org/10.1101/cshperspect.a035667
  15. Mitchell RS, Beitzel BF, Schroder AR, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2(8):E234. https://doi.org/10.1371/journal.pbio.0020234
  16. Osborn MJ, Starker CG, McElroy AN, et al. 2013. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21:1151-1159. https://doi.org/10.1038/mt.2013.56
  17. Lewinski MK, Yamashita M, Emerman M et al. Retroviral DNA integration: viraland cellular determinants of target-site selection. PLoS Pathog. 2006;2(6):e60.  https://doi.org/10.1371/journal.ppat.0020060
  18. Kaushik R, Ratner L. Role of human immunodeficiency virus type 1 matrix phosphorylation in an early post-entry step of virus replication. J Virol. 2004;78(5):2319-2326. https://doi.org/10.1128/JVI.78.5.2319-2326.2004
  19. Maruggi G, Porcellini S, Facchini G, et al. Transcriptional enhancers induce insertional gene deregulation independently from the vector typeand design. Mol Ther. 2009;17(5):851-856.  https://doi.org/10.1038/mt.2009.51
  20. Georgiadis C, Syed F, Petrova A, et al. Lentiviral engineered fibroblasts expressing codon optimized COL7A1 restore anchoring fibrils in RDEB. J Invest Dermatol. 2015;136:284-292.  https://doi.org/10.1038/JID.2015.364
  21. Lwin SM, Syed F, Di WL, et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4(11):126243. https://doi.org/10.1172/jci.insight.126243
  22. Marconi P, Argnani R, Berto E, et al. HSV as a vector in vaccine development and gene therapy. Hum Vaccin. 2008;4(2):91-105.  https://doi.org/10.4161/hv.4.2.6212
  23. Siprashvili Z, Nguyen NT, Gorell ES, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316(17):1808-1817. https://doi.org/10.1001/jama.2016.15588
  24. Abdul-Wahab A, Qasim W, McGrath JA. Gene therapies for inherited skin disorders. Semin Cutan Med Surg. 2014;33(2):83-90.  https://doi.org/10.12788/j.sder.0085
  25. Eichstadt S, Barriga M, Ponakala A, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4(19):e130554. https://doi.org/10.1172/jci.insight.130554
  26. Bauer JW, Koller J, Murauer EM, et al. Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells J Invest Dermatol. 2017;137(3):778-781.  https://doi.org/10.1016/j.jid.2016.10.038
  27. Supp DM, et al. Collagen VII expression is required in both keratinocytes and fibroblasts for anchoring fibril formation in bilayer engineered skin substitutes. Cell Transplant. 2019;28(9-10):1242-1256. https://doi.org/10.1177/0963689719857657
  28. Wojtowicz AM, Oliveira S, Carlson MW, et al. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014;22(2):246-255.  https://doi.org/10.1111/wrr.12154
  29. Boyce ST, Kagan RJ, Greenhalgh DG, et al. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma. 2006;60(4):821-829. 
  30. Klingenberg JM, McFarland KL, Friedman A, et al. Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation following transplantation to athymic mice. J Invest Dermatol. 2010;130(2):587-601.  https://doi.org/10.1038/jid.2009.295
  31. Ghalbzouri A, Ponec M. Diffusible factors released by fibroblasts support epidermal morphogenesis and deposition of basement membrane components. Wound Repair Regen. 2004;12(3):359-367.  https://doi.org/10.1111/j.1067-1927.2004.012306.x
  32. Takahashi K, Okita K, Nakagawa M, et al. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2(12):3081-3089. https://doi.org/10.1038/nprot.2007.418
  33. Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: A promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 2017;32(1):42-61.  https://doi.org/10.3904/kjim.2016.198
  34. Jackow J, Guo Z, Hansen C, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. PNAS. 2019;116(52):26846-26852. https://doi.org/10.1073/pnas.1907081116
  35. Moreno AM, Mali P. Therapeutic genome engineering via CRISPR — Cas systems. Wiley Interdiscip. Rev Syst Biol Med. 2017;9:1380. https://doi.org/10.1002/wsbm.1380
  36. Shinkuma S, Guo Z, Christiano AM. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa. Proc Natl Acad Sci USA. 2016;113(20):5676-5681. https://doi.org/10.1073/pnas.1512028113
  37. Itoh M, Kiuru M, Cairo MS, et al. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2011;108:8797-8802. https://doi.org/10.1073/pnas.1100332108
  38. Jonkman MF, Pasmooij AM. Revertant mosaicism—patchwork in the skin. NEngl J Med. 2009;360:1680-1682.
  39. Gostyński A, Llames S, García M, et al. Long-term survival of type XVII collagen revertant cells in an animal model of revertant cell therapy. J Invest Dermatol. 2014;134:571-574. 
  40. Bushman FD. Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones. Mol. Ther. 2020;28(2):352-356.  https://doi.org/10.1016/j.ymthe.2019.12.009
  41. Drack AV, Bhattarai S, Seo S, et al. Overcoming the Overexpression Toxicity of Gene Replacement Therapy for Bardet Biedl Syndrome Type 1. Investig. Ophthalmol. Vis. Sci. 2014;55:4378.
  42. Alhaji SY, Ngai SC, Abdullah S. Silencing of Transgene Expression in Mammalian Cells by DNA Methylation and Histone Modifications in Gene Therapy Perspective. Biotechnol. Genet. Eng. Rev. 2019;35(1):1-25.  https://doi.org/10.1080/02648725.2018.1551594
  43. Pendaries V, Gasc G, Titeux M, et al. Immune reactivity to type VII collagen: implications for gene therapy of recessive dystrophic epidermolysis bullosa. Gene Ther. 2010;17(7):930-937.  https://doi.org/10.1038/gt.2010.36
  44. Prodinger C, et al. Epidermolysis bullosa: advances in research and treatment. Exp Dermatol. 2019;28(10):1176-1189 

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.