The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Pavlova G.V.

Sechenov First Moscow State Medical University;
Institute of Higher Nervous Activity and Neurophysiology;
Burdenko Neurosurgical Center

Golbin D.A.

Burdenko National Medical Research Center for Neurosurgery

Kubyshkina V.E.

Sechenov First Moscow State Medical University

Galkin M.V.

Burdenko National Medical Research Center for Neurosurgery

Pronin I.N.

Burdenko Neurosurgical Center

Karandashov I.V.

Sechenov First Moscow State Medical University;
Institute of Higher Nervous Activity and Neurophysiology

Cell cultures of human CNS tumors as in vitro model for individualized therapeutic approach

Authors:

Pavlova G.V., Golbin D.A., Kubyshkina V.E., Galkin M.V., Pronin I.N., Karandashov I.V.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2022;86(6): 84‑90

Read: 3099 times


To cite this article:

Pavlova GV, Golbin DA, Kubyshkina VE, Galkin MV, Pronin IN, Karandashov IV. Cell cultures of human CNS tumors as in vitro model for individualized therapeutic approach. Burdenko's Journal of Neurosurgery. 2022;86(6):84‑90. (In Russ., In Engl.)
https://doi.org/10.17116/neiro20228606184

Recommended articles:

References:

  1. Patel C, Stenke L, Varma S, Lindberg ML, Björkholm M, Sjöberg J, Viktorsson K, Lewensohn R, Landgren O, Gottesman MM, Gillet JP. Multidrug resistance in relapsed acute myeloid leukemia: Evidence of biological heterogeneity. Cancer. 2013;119(16):3076-3083. https://doi.org/10.1002/cncr.28098
  2. Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, Grello C, Oxford M, Yuan F, Abounader R. The p53 Pathway in Glioblastoma. Cancers. 2018;10(9):297.  https://doi.org/10.3390/cancers10090297
  3. Fulci G, Ishii N, Van Meir EG. p53 and brain tumors: from gene mutations to gene therapy. Brain Pathology. 1998;8(4):599-613.  https://doi.org/10.1111/j.1750-3639.1998.tb00187.x
  4. Kim E, Kim M, So K, Park YS, Woo CG, Hyun SH. Characterization and comparison of genomic profiles between primary cancer cell lines and parent atypical meningioma tumors. Cancer Cell International. 2020;20:345.  https://doi.org/10.1186/s12935-020-01438-x
  5. Goodspeed A, Heiser LM, Gray JW, Costello JC. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Molecular Cancer Research. 2016;14(1):3-13.  https://doi.org/10.1158/1541-7786.MCR-15-0189
  6. Gao J, Ciriello G, Sander C, Schultz N. Collection, integration and analysis of cancer genomic profiles: from data to insight. Current Opinion in Genetics & Development. 2014;24:92-98.  https://doi.org/10.1016/j.gde.2013.12.003
  7. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-607.  https://doi.org/10.1038/nature11003
  8. Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research. 2020;80(20):4314-4323. https://doi.org/10.1158/0008-5472
  9. Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG, Esteller M. A systematic profile of DNA methylation in human cancer cell lines. Cancer Research. 2003;63(5):1114-1121.
  10. Mansouri A, Hachem LD, Mansouri S, Nassiri F, Laperriere NJ, Xia D, Lindeman NI, Wen PY, Chakravarti A, Mehta MP, Hegi ME, Stupp R, Aldape KD, Zadeh G. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro-oncology. 2019;21(2):167-178.  https://doi.org/10.1093/neuonc/noy132
  11. Gerashchenko TS, Denisov EV, Litviakov NV, Zavyalova MV, Vtorushin SV, Tsyganov MM, Perelmuter VM, Cherdyntseva NV. Intratumor heterogeneity: nature and biological significance. Biochemistry. 2013;78(11):1201-1215. https://doi.org/10.1134/S0006297913110011
  12. Liu J, Dang H, Wang XW. The significance of intertumor and intratumor heterogeneity in liver cancer. Experimental & Molecular Medicine. 2018;50(1):e416. https://doi.org/10.1038/emm.2017.165
  13. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Research. 2009;69(4):1302-1313. https://doi.org/10.1158/0008-5472.CAN-08-2741
  14. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences. 2004;101(3):781-786.  https://doi.org/10.1073/pnas.0307618100
  15. Hueng DY, Sytwu HK, Huang SM, Chang C, Ma HI. Isolation and characterization of tumor stem-like cells from human meningiomas. Journal of Neurooncology. 2011;104(1):45-53.  https://doi.org/10.1007/s11060-010-0469-1
  16. Lopez-Bertoni H, Lal B, Li A, Caplan M, Guerrero-Cázares H, Eberhart CG, Quiñones-Hinojosa A, Glas M, Scheffler B, Laterra J, Li Y. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene. 2015;34(30):3994-4004. https://doi.org/10.1038/onc.2014.334
  17. Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, Curry WT, Martuza RL, Rivera MN, Rossetti N, Kasif S, Beik S, Kadri S, Tirosh I, Wortman I, Shalek AK, Rozenblatt-Rosen O, Regev A, Louis DN, Bernstein BE. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580-594.  https://doi.org/10.1016/j.cell.2014.02.030
  18. Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, Bachoo RM, Kane M, Louis DN, Depinho RA, Anderson DJ, Stiles CD, Rowitch DH. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron. 2007;53(4):503-517.  https://doi.org/10.1016/j.neuron.2007.01.009
  19. Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, Relichova J. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32.  https://doi.org/10.1186/1471-2407-6-32
  20. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular Cancer. 2006;5:67.  https://doi.org/10.1186/1476-4598-5-67
  21. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery. 2008;62(2):505-515.  https://doi.org/10.1227/01.neu.0000316019.28421.95
  22. Yaes RJ. Tumor heterogeneity, tumor size, and radioresistance. International Journal of Radiation Oncology, Biology, Physics. 1989;17(5):993-1005. https://doi.org/10.1016/0360-3016(89)90147-8
  23. Wahl DR, Dresser J, Wilder-Romans K, Parsels JD, Zhao SG, Davis M, Zhao L, Kachman M, Wernisch S, Burant CF, Morgan MA, Feng FY, Speers C, Lyssiotis CA, Lawrence TS. Glioblastoma Therapy Can Be Augmented by Targeting IDH1-Mediated NADPH Biosynthesis. Cancer Research. 2017;77(4):960-970.  https://doi.org/10.1158/0008-5472
  24. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M. A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Molecular Neurobiology. 2013;47(1):131-144.  https://doi.org/10.1007/s12035-012-8349-7
  25. Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, Liu R. miR-124 radiosensitizes human glioma cells by targeting CDK4. Journal of neuro-oncology. 2013;114(3):263-274.  https://doi.org/10.1007/s11060-013-1179-2
  26. Li W, Guo F, Wang P, Hong S, Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Current Molecular Medicine. 2014;14(1):185-195.  https://doi.org/10.2174/1566524013666131203103147
  27. Rygaard J, Povsen CO. Heterotransplantation of a human malignant tumour to «nude» mice. 1969. APMIS. 2007;115(5):604-608.  https://doi.org/10.1111/j.1600-0463.2007.apm_689a.x
  28. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute. 2007;99(19):1441-1454. https://doi.org/10.1093/jnci/djm135
  29. Gomez-Roman N, Stevenson K, Gilmour L, Hamilton G, Chalmers AJ. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-Oncology. 2017;19(2):229-241.  https://doi.org/10.1093/neuonc/now164
  30. Witusik-Perkowska M, Zakrzewska M, Jaskolski DJ, Liberski PP, Szemraj J. Artificial microenvironment of in vitro glioblastoma cell cultures changes profile of miRNAs related to tumor drug resistance. Onco Targets and Therapy. 2019;12:3905-3918. https://doi.org/10.2147/OTT.S190601
  31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.  https://doi.org/10.1016/j.cell.2011.02.013
  32. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Research. 1996;56(24):5754-5757.
  33. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S, Mitsiades N, Schlossman RL, Munshi NC, Kung AL, Griffin JD, Richardson PG, Anderson KC, Mitsiades CS. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nature Medicine. 2010;16(4):483-489.  https://doi.org/10.1038/nm.2112
  34. Pandita A, Aldape KD, Zadeh G, Guha A, James CD. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 2004;39(1):29-36.  https://doi.org/10.1002/gcc.10300
  35. Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL, Schroeder MA, James CD. Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-Oncology. 2005;7(2):164-176.  https://doi.org/10.1215/S1152851704000821
  36. Eisemann T, Costa B, Strelau J, Mittelbronn M, Angel P, Peterziel H. An advanced glioma cell invasion assay based on organotypic brain slice cultures. BMC Cancer. 2018;18(1):103.  https://doi.org/10.1186/s12885-018-4007-4
  37. Garros-Regulez L, Garcia I, Carrasco-Garcia E, Lantero A, Aldaz P, Moreno-Cugnon L, Arrizabalaga O, Undabeitia J, Torres-Bayona S, Villanua J, Ruiz I, Egaña L, Sampron N, Matheu A. Targeting SOX2 as a Therapeutic Strategy in Glioblastoma. Frontiers in Oncology. 2016;6:222.  https://doi.org/10.3389/fonc.2016.00222
  38. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer. 2006;6(10):813-823.  https://doi.org/10.1038/nrc1951
  39. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. Journal of the National Cancer Institute. 1989;81(14):1088-1092. https://doi.org/10.1093/jnci/81.14.1088
  40. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN. A gene expression database for the molecular pharmacology of cancer. Nature Genetics. 2000;24(3):236-244.  https://doi.org/10.1038/73439
  41. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929-1935. https://doi.org/10.1126/science.1132939
  42. Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, Carroll WL. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood. 2012;119(22):5201-5210. https://doi.org/10.1182/blood-2012-01-401687
  43. Pingle SC, Sultana Z, Pastorino S, Jiang P, Mukthavaram R, Chao Y, Bharati IS, Nomura N, Makale M, Abbasi T, Kapoor S, Kumar A, Usmani S, Agrawal A, Vali S, Kesari S. In silico modeling predicts drug sensitivity of patient-derived cancer cells. Journal of Translational Medicine. 2014;12:128.  https://doi.org/10.1186/1479-5876-12-128
  44. Iwadate Y, Fujimoto S, Namba H, Yamaura A. Promising survival for patients with glioblastoma multiforme treated with individualised chemotherapy based on in vitro drug sensitivity testing. British Journal of Cancer. 2003;89(10):1896-1900. https://doi.org/10.1038/sj.bjc.6601376
  45. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, Liu DA, Qian X, Petrov D, Lucas T, Chen HI, Dorsey JF, Christian KM, Binder ZA, Nasrallah M, Brem S, O’Rourke DM, Ming GL, Song H. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell. 2020;180(1):188-204.e22.  https://doi.org/10.1016/j.cell.2019.11.036
  46. Giles AJ, Hao S, Padget M, Song H, Zhang W, Lynes J, Sanchez V, Liu Y, Jung J, Cao X, Fujii R, Jensen R, Gillespie D, Schlom J, Gilbert MR, Nduom EK, Yang C, Lee JH, Soon-Shiong P, Hodge JW, Park DM. Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight. 2019;4(20):e130688. https://doi.org/10.1172/jci.insight.130688

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.