The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Tkacheva O.N.

Yahno N.N.

Neznanov N.G.

Shport S.V.

Shamalov N.A.

Levin O.S.

Kostyuk G.P.

Gusev E.I.

Martynov M.Yu.

Gavrilova S.I.

Kotovskaya Yu.V.

Mkhitaryan E.A.

Cherdak M.A.

Kolykhalov I.V.

Shmukler A.B.

Pishchikova L.E.

Bogolepova A.N.

Litvinenko I.V.

Emelin A.Yu.

Lobzin V.Yu.

Vasenina E.E.

Zalutskaya N.M.

Zakharov V.V.

Preobrazhenskaya I.S.

Kurmyshev M.V.

Savilov V.B.

Isaev R.I.

Chimagomedova A.Sh.

Dudchenko N.G.

Palchikova E.I.

Gomzyakova N.A.

Zanin K.V.

Clinical guidelines «Cognitive disorders in the elderly and senile persons»

Authors:

Tkacheva O.N., Yahno N.N., Neznanov N.G., Shport S.V., Shamalov N.A., Levin O.S., Kostyuk G.P., Gusev E.I., Martynov M.Yu., Gavrilova S.I., Kotovskaya Yu.V., Mkhitaryan E.A., Cherdak M.A., Kolykhalov I.V., Shmukler A.B., Pishchikova L.E., Bogolepova A.N., Litvinenko I.V., Emelin A.Yu., Lobzin V.Yu., Vasenina E.E., Zalutskaya N.M., Zakharov V.V., Preobrazhenskaya I.S., Kurmyshev M.V., Savilov V.B., Isaev R.I., Chimagomedova A.Sh., Dudchenko N.G., Palchikova E.I., Gomzyakova N.A., Zanin K.V.

More about the authors

Read: 6884 times


To cite this article:

Tkacheva ON, Yahno NN, Neznanov NG, et al. . Clinical guidelines «Cognitive disorders in the elderly and senile persons». S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(3‑3):7‑149. (In Russ.)
https://doi.org/10.17116/jnevro2025125337

References:

  1. Budson AE, Kowall NW. Handbook of Alzheimer’s disease and other dementias. Wiley-Blackwell, 2013; 387 c. 
  2. Duering M, Righart R, Wollenweber FA, et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015; 84: c. 1685-1692 
  3. Smith EE, Schneider JA, Wardlaw JM, et al. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 2012; 11: c. 272-282. 
  4. Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 2007; 62: c. 406-413. 
  5. Qiu C, Cotch MF, Sigurdsson S, et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology. 2010; 75: c. 2221-2228.
  6. Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology. 2012; 78: c. 326-333. 
  7. Seo SW, Hwa Lee B, Kim EJ, et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke. 2007; 38: c. 1949-1951.
  8. Smith EE, Greenberg SM. Beta-amyloid, blood vessels, and brain function. Stroke. 2009; 40: c. 2601-2606.
  9. Яхно Н.Н., Захаров В.В., Локшина А.Б. и др. Деменции. Рук-во для врачей. 2-е изд. М.: Медпресс-информ, 2010; 272 с. 
  10. Zekry D, Hauw JJ, Gold G. Mixed dementia: epidemiology, diagnosis and treatment. J. Amer. Geriatr. Soc. 2002; 50(8): c. 1431-1438.
  11. Sadowski M, Pankiewicz J, Scholtzova H, et al. Links between the pathology of Alzheimer’s disease and vascular dementia. Neurochem. Res. 2004; 29: c. 1257-1266.
  12. Bird TD, Knopman D, Van Swieten J, et al. Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Annals of Neurology. 2003; 54(Suppl 5): c. S29–S31. 
  13. Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia //International Review of Psychiatry. — 2013. — T. 25. — №. 2. — C. 130-137. 
  14. Rosso SM, Landweer E.-J, Houterman M, et al. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. Journal of Neurology, Neurosurgery and Psychiatry. 2003; 74(11): c. 1574-1576.
  15. Guerreiro R, et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. The Lancet Neurology. 2018; 17(1): c. 64-74. 
  16. Vergouw LJ.M, et al. An update on the genetics of dementia with Lewy bodies. Parkinsonism & related disorders. 2017; 43: c. 1-8. 
  17. Irwin DJ, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. The Lancet Neurology. 2017; 16(1): c. 55-65. 
  18. Thomas M. (ed.). Inflammation in Parkinson’s Disease: Scientific and Clinical Aspects. Springer, 2014; 222 c. 
  19. Kotzbauer PT, et al. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Archives of neurology. 2012; 69(10): c. 1326-1331.
  20. Jellinger KA. Pathological substrate of dementia in Parkinson’s disease—its relation to DLB and DLBD. Parkinsonism & related disorders. 2006; 12(2): c. 119-120. 
  21. Gomez-Tortosa E, Newell K, Irizarry MC, et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology. 1999; 53: c. 1284-1291.
  22. Cagnin A, et al. Clinical and cognitive correlates of visual hallucinations in dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2013; 84(5): c. 505-510. 
  23. Harding AJ, Broe GA, Halliday GM. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain. 2002; 125(2): c. 391-403. 
  24. Yokoi K, et al. Hallucinators find meaning in noises: pareidolic illusions in dementia with Lewy bodies. Neuropsychologia. 2014; 56: c. 245-254. 
  25. Walker Z, et al. Lewy body dementias. The Lancet. 2015; 386(10004): c. 1683-1697.
  26. Fritz NE, et al. Motor performance differentiates individuals with Lewy body dementia, Parkinson’s and Alzheimer’s disease. Gait & Posture. 2016; 50: c. 1-7. 
  27. Dementia. Fact sheets. WHO.  https://www.who.int/news-room/fact-sheets/detail/dementia.
  28. Sachdev PS, Lipnicki DM, Kochan NA, et al. The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS One. 2015; 10(11)
  29. Zhu XC, Tan L, Wang HF, et al. Rate of early onset Alzheimer’s disease: a systematic review and meta-analysis. Ann Transl Med. 2015; 3(3):38. 
  30. Белоусов Ю.Б., Зырянов С.К., Белоусов Д.Ю., Бекетов А.С. Клинико-экономические аспекты терапии болезни Альцгеймера в России. Качественная клиническая практика. 2009; спецвыпуск: с. 3-28. 
  31. Rizzi L, Rosset I, Roriz-Cruz M. Global Epidemiology of Dementia: Alzheimer’s and Vascular Types. BioMed Research International. 2014; 908915: c. 1-8. 
  32. Калын Я.Б. Эпидемиология болезни Альцгеймера: сравнительный анализ эпидемиологических данных. Материалы III научно-практической конференции «Медико-социальные аспекты психического здоровья пожилого человека». М., 2011.
  33. Яхно Н.Н. Когнитивные расстройства в неврологической клинике. Неврол. Журн. 2006;.11(Прил. 1): с. 4-12. 
  34. Ratnavalli E, Brayne C, Dawson K, et al. The prevalence of frontotemporal dementia. Neurology. 2002; 58: c. 1615-1621.
  35. Mercy L, Hodges JR, Dawson K, et al. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology. 2008; 71: c. 1496-1499.
  36. Coyle-Gilchrist IT, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016; 86(18): c. 1736-1743.
  37. Lambert MA, Bickel H, Prince M, et al. Estimating the burden of early onset dementia; systematic review of disease prevalence. Eur J Neurol. 2014; 21: c. 563-569. 
  38. Kansal K, Mareddy M, Sloane KL, et al. Survival in Frontotemporal Dementia Phenotypes: A Meta-Analysis. Dement Geriatr Cogn Disord. 2016; 41: c. 109-122. 
  39. Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014; 44: c. 673-683. 
  40. Savica R, et al. Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA neurology. 2013; 70(11): c. 1396-1402.
  41. Perez F, et al. A 15-year population-based cohort study of the incidence of Parkinson’s disease and dementia with Lewy bodies in an elderly French cohort. Journal of Neurology, Neurosurgery & Psychiatry. 2010; 81(7): c. 742-746. 
  42. Международная статистическая классификация болезней и проблем, связанных со здоровьем. Десятый пересмотр (МКБ-10). — Женева, ВОЗ, 1995.–317 с. 
  43. International Classification of Diseases 11th Revision (ICD-11): https://icd.who.int/en
  44. https://doi.org/10.31453/kdu.ru.91304.0172. ISBN 978-5-91304-985-8 
  45. Petersen RS, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 1999; 56: c. 303-308. 
  46. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014; 13(6): c. 614-629. 
  47. Емелин А.Ю., Лобзин В.Ю., Воробьев С.В. Когнитивные нарушения: руководство для врачей. Москва, 2019; 416 с. 
  48. Chare L, Hodges JR, Leyton CE, et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry. 2014; 85: c. 866-871. 
  49. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017; 89: c. 1-13. 
  50. McKeith IG, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020; 94 (17):743-755. 
  51. Okura T, Plassman BL, Steffens DC. Prevalence of neuropsychiatric symptoms and their association with functional limitations in older adults in the United States: The Aging, Demographics, and Memory Study. JAm. Geriatr. Soc. 2010; 58: c. 330-337. 
  52. Jack CRJr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7(3): c. 257-262. 
  53. Emilien G, Durlach C, Minaker KL, et al. Alzheimer’s disease: neuropsychology and pharmacology. Shpringer Bazel AG. 2012; 283 c. 
  54. Яхно Н.Н., Преображенская И.С., Захаров В.В. и др. Распространенность когнитивных нарушений при неврологических заболеваниях (анализ работы специализированного амбулаторного приема). Неврология, нейропсихиатрия, психосоматика. 2012; 2: с. 30-35. 
  55. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004 Sep;256(3):183-94.  https://doi.org/10.1111/j.1365-2796.2004.01388.x
  56. Feinberg TE, Farah MJ. Behavioral neurology and neuropsychology. 2nd edition. McGrawHill, 2003; 910 c. 
  57. Gauthier S. Clinical diagnosis and management of Alzheimer’s disease. Informa UK Ltd, 2007; 393 c. 
  58. Zhao QF, Tan L, Wang HF, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: Systematic review and meta-analysis. J Affect Disord. 2016; 190: c. 264-271. 
  59. Левин О.С. Диагностика и лечение когнитивных нарушений и деменции в клинической практике. М.: МЕДпресс-информ, 2019; 448 с. 
  60. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington, VA: American Psychiatric Publishing, 2013; 992 c. 
  61. Гусев Е.И., Боголепова А.Н. Депрессивные расстройства у пациентов с цереброваскулярными заболеваниями. 2-е изд. М.: МЕДпресс-информ, 2017; 208 с. 
  62. Caeiro L, Ferro JM, Costa J. Apathy secondary to stroke: a systematic review and meta-analysis //Cerebrovascular Diseases. — 2013. — T. 35. — №. 1. — c. 23-39. 
  63. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134: c. 2456-2477.
  64. McKeith I, Taylor J, Thomas A, et al. Revisiting DLB Diagnosis: A Consideration of Prodromal DLB and of the Diagnostic Overlap With Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology. 2016; 29: c. 249-253. 
  65. Ferman TJ, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer’s disease. The Clinical Neuropsychologist. 2006; 20(4): c. 623-636. 
  66. Varanese S, et al. Fluctuating cognition and different cognitive and behavioural profiles in Parkinson’s disease with dementia: comparison of dementia with Lewy bodies and Alzheimer’s disease. Journal of neurology. 2010; 257(6): c. 1004-1011.
  67. McKeith IG. Dementia with Lewy bodies: a clinical overview. Dementia — CRC Press. 2017; c. 739-749. 
  68. Левин О.С., Аникина М.А., Шиндряева Н.Н., Зимнякова О.С. Психотические нарушения при болезни Паркинсона и деменции с тельцами Леви. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011; 6: с. 82-88. 
  69. Левин О.С. Диагностика и лечение деменции в клинической практике. М.: МЕДпресс-информ, 2010; 256 с. 
  70. Rueda AD, Lau KM, Saito N, et al. Self-rated and informant-rated everyday function in comparison to objective markers of Alzheimer’s disease. Alzheimers Dement. 2015; 11(9): c. 1080-1089.
  71. Jorm AF. Mental health literacy: Public knowledge and beliefs about mental disorders //The British Journal of Psychiatry. — 2000. — T. 177. — №. 5. — c. 396-401. 
  72. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7(3): c. 263-269. 
  73. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7(3): c. 270-279. 
  74. Battle CE, Abdul-Rahim AH, Shenkin SD, Hewitt J, Quinn TJ. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: a network meta-analysis. Cochrane Database Syst Rev. 202; 2(2): CD013306.
  75. Harrison JK, Stott DJ, McShane R, et al. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the early diagnosis of dementia across a variety of healthcare settings. Cochrane Database Syst Rev. 2016; 11: CD011333. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011333.pub2/epdf/full/en
  76. McLennan SN, Mathias JL, Brennan LC, et al. Cognitive impairment predicts functional capacity in dementia-free patients with cardiovascular disease. J Cardiovasc Nurs. 2010; 25(5): c. 390-397. 
  77. Ruxton K, Woodman RJ, Mangoni AA. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: A systematic review and meta-analysis. Br J Clin Pharmacol. 2015; 80(2): c. 209-220. 
  78. Coupland CA.C, Hill T, Dening T, et al. Anticholinergic Drug Exposure and the Risk of Dementia: A Nested Case-Control Study. JAMA Intern Med. 2019; 179(8): c. 1084-1093.
  79. Joung KI, Kim S, Cho YH, Cho SI. Association of Anticholinergic Use with Incidence of Alzheimer’s Disease: Population-based Cohort Study. Sci Rep. 2019; 9(1):6802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494800/pdf/41598_2019_Article_43066.pdf
  80. Rawle MJ, Cooper R, Kuh D, Richards M. Associations Between Polypharmacy and Cognitive and Physical Capability: A British Birth Cohort Study. J Am Geriatr Soc. 2018; 66(5): c. 916-923. 
  81. Tucker AR, Ng KT. Digoxin-related impairment of learning and memory in cardiac patients. Psychopharmacology. 1983; 81: c. 86-88. 
  82. Gnjidic D, Hilmer S, Blyth F, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012; 65(9): c. 989-995 
  83. Cannon-Albright LA, Foster NL, Schliep K, et al. Relative risk for Alzheimer disease based on complete family history. Neurology. 2019; 92(15): c. e1745–e1753 
  84. Mendez MF. Early-onset Alzheimer disease //Neurologic clinics. — 2017. — T. 35. — №. 2. — c. 263-281. 
  85. Levine DA, Wadley VG, Langa KM, et al. Risk Factors for Poststroke Cognitive Decline: The REGARDS Study (Reasons for Geographic and Racial Differences in Stroke). Stroke. 2018; 49(4): c. 987-994. 
  86. Ford E, Greenslade N, Paudyal P, et al. Predicting dementia from primary care records: A systematic review and meta-analysis. PLOS ONE. 2018; 13(3): e0194735.
  87. Carr AR, Mendez MF. Affective Empathy in Behavioral Variant Frontotemporal Dementia: A Meta-Analysis. Front Neurol. 2018; 9(417): c. 1-8 
  88. Bora E, Walterfang M, Velakoulis D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer’s disease: a meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry 2015; 86: c. 714-719. 
  89. Chakrabarty T, Sepehry A, Jacova C, et al. The Prevalence of Depressive Symptoms in Frontotemporal Dementia: A Meta-Analysis. Dement Geriatr Cogn Disord 2015; 39: c. 257-271. 
  90. Kamath V, Chaney G, DeRight J, Onyike c. A meta-analysis of neuropsychological, social cognitive, and olfactory functioning in the behavioral and language variants of frontotemporal dementia. Psychological Medicine 2019; 49(16): c. 2669-2680.
  91. Warren JD, Rohrer JD, Rossor MN. Clinical review. Frontotemporal dementia. BMJ 2013; 347(f4827): c.1-9. 
  92. Mishra A, Ferrari R, Heutink P, et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain. 2017; 140(5): c. 1437-1446.
  93. Majumder V, Gregory JM, Barria MA, et al. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol 2018; 18(90): c. 1-7.  https://bmcneurol.biomedcentral.com/track/pdf/10.1186/s12883-018-1091-7
  94. Ferrari R, Wang Y, Vandrovcova J, et al. Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases. Journal of Neurology, Neurosurgery & Psychiatry 2017; 88: c. 152-164. 
  95. Curtis AF, Masellis M, Hsiung GR, et al. Sex differences in the prevalence of genetic mutations in FTD and ALS: A meta-analysis. Neurology. 2017; 89(15): c. 1633-1642.
  96. Zhang CC, Zhu JX, Wan Y, et al. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget. 2017; 8(27): c. 44994-45007.
  97. Faroqi-Shah Y, Friedman L. Production of Verb Tense in Agrammatic Aphasia: A Meta-Analysis and Further Data. Behav Neurol. 2015; 2015(983870): c. 1-15.  https://downloads.hindawi.com/journals/bn/2015/983870.pdf
  98. Battistella G, Borghesani V, Henry M, et al. Task-free functional language networks: reproducibility and clinical application. Journal of Neuroscience. 2019; 1485-19.  https://www.jneurosci.org/content/early/2019/12/18/JNEUROSCI.1485-19.2019
  99. Kamath V, Sutherland E, Chaney G. A Meta-Analysis of Neuropsychological Functioning in the Logopenic Variant of Primary Progressive Aphasia: Comparison with the Semantic and Non-Fluent Variants. Journal of the International Neuropsychological Society. 2019; c. 1-9. 
  100. Poole ML, Brodtmann A, Darby D, Vogel AP. Motor Speech Phenotypes of Frontotemporal Dementia, Primary Progressive Aphasia, and Progressive Apraxia of Speech. J Speech Lang Hear Res. 2017; 60(4): c. 897-911. 
  101. Ferman TJ, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology. 2011; 77(9): c. 875-882. 
  102. Mosimann UP, Mather G, Wesnes KA, et al. Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology. 2004; 63(11): c. 2091-2096.
  103. Collerton D, Burn D, McKeith I, O’Brien J. Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dementia and geriatric cognitive disorders. 2003; 16(4): c. 229-237. 
  104. Postuma RB, Gagnon JF, Vendette M, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology. 2009; 72: c. 1296-1300.
  105. Iranzo A, Fernandez-Arcos A, Tolosa E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014; 9: e89741.
  106. Postuma RB, Arnulf I, Hogl B, et al. A single-question screen for rapid eye movement sleep behavior disorder: a multicenter validation study. Mov. Disord. 2012; 27(7): c. 913-916. 
  107. Boeve BF, Silber MH, Ferman TJ, et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep medicine. 2013; 14(8): c. 754-762. 
  108. Waldemar G, Dubois B, Emre M, et al. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. European Journal of Neurology 2007; 14: c. e1–e26. 
  109. Borges MK, Canevelli M, Cesari M, Aprahamian I. Frailty as a Predictor of Cognitive Disorders: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2019; 6(26): c. 1-8. 
  110. Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia. 2020; 63: c. 3-9. 
  111. Urbanowitsch N, Degen C, Toro P, Schröder J. Neurological soft signs in aging, mild cognitive impairment, and Alzheimer’s disease — the impact of cognitive decline and cognitive reserve. Front Psychiatry. 2015; 6 (12): c. 1-5. 
  112. Pasquini L, Llibre Guerra J, Prince M, et al. Neurological signs as early determinants of dementia and predictors of mortality among older adults in Latin America: a 10/66 study using the NEUROEX assessment. BMC Neurol. 2018; 18:163. 
  113. Gasca-Salas C, Masellis M, Khoo E, et al. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(4): e0153852.
  114. Park HK, Park KH, Yoon B, et al. Clinical characteristics of parkinsonism in frontotemporal dementia according to subtypes. J Neurol Sci. 2017; 372: c. 51-56. 
  115. Kasuga K, Kikuchi M, Tokutake T, et al. Systematic review and meta-analysis of Japanese familial Alzheimer’s disease and FTDP-17. J Hum Genet. 2015; 60(5): c. 281-283. 
  116. Beeldman E, Raaphorst J, Klein Twennaar M, et al. The cognitive profile of behavioural variant FTD and its similarities with ALS: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry 2018; 89: c. 995-1002.
  117. Diekstra FP, et al. C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome‐wide meta‐analysis //Annals of neurology. — 2014. — T. 76. — №. 1. — c. 120-133. 
  118. Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015; 30(12): c. 1591-1601.
  119. Lippa CF, et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers //Neurology. — 2007. — T. 68. — №. 11. — c. 812-819. 
  120. Horimoto Y, Matsumoto M, Akatsu H, et al. Autonomic dysfunctions in dementia with Lewy bodies. Journal of neurology. 2003; 250(5): c. 530-533. 
  121. Andersson M, Hansson O, Minthon L, et al. The period of hypotension following orthostatic challenge is prolonged in dementia with Lewy bodies. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences. 2008; 23(2): c. 192-198. 
  122. Stubendorff K, Aarsland D, Minthon L, Londos E. The impact of autonomic dysfunction on survival in patients with dementia with Lewy bodies and Parkinson’s disease with dementia. PloS one. 2012; 7(10): e45451. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045451&type=printable
  123. Saito Y, Ishikawa J, Harada K. Postprandial and orthostatic hypotension treated by Sitagliptin in a patient with dementia with Lewy bodies. The American journal of case reports. 2016; 17: c. 887-893. 
  124. Chen TB, Yiao SY, Sun Y, et al. Comorbidity and dementia: A nationwide survey in Taiwan. PLOS ONE. 2017; 12(4)
  125. Bunn F, Burn AM, Goodman C, et al. Comorbidity and dementia: a scoping review of the literature. BMC Med. 2014; 12(192): c. 1-15.  https://www.biomedcentral.com/1741-7015/12/192
  126. Falk N, Cole A, Meredith TJ. Evaluation of Suspected Dementia. Am Fam Physician. 2018; 97(6): c. 398-405. 
  127. Schneider AL, Jonassaint C, Sharrett AR, et al. Hemoglobin, Anemia, and Cognitive Function: The Atherosclerosis Risk in Communities Study. J Gerontol A Biol Sci Med Sci. 2016; 71(6): c. 772-779. 
  128. Dlugaj M, Winkler A, Weimar C, et al. Anemia and Mild Cognitive Impairment in the German General Population. J Alzheimers Dis. 2016; 49(4): c. 1031-1042.
  129. Agrawal S, Kumar S, Ingole V, et al. Does anemia affects cognitive functions in neurologically intact adult patients: Two year cross sectional study at rural tertiary care hospital. J Family Med Prim Care 2019; 8: c. 3005-3008.
  130. Etgen T, Sander D, Chonchol M, et al. Chronic kidney disease is associated with incident cognitive impairment in the elderly: The INVADE study. Nephrology Dialysis Transplantation. 2009; 24(10): c. 3144-3150.
  131. Yaffe K, Ackerson L, Tamura MK, et al. Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. Journal of the American Geriatrics Society. 2010; 58(2): c. 338-345. 
  132. Berger I, Wu S, Masson P, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016; 14(206): c. 1-10. 
  133. Hadjihambi A, Arias N, Sheikh M, et al. Hepatic encephalopathy: a critical current review. Hepatol Int. 2018; 12: c. 135-147. 
  134. Bajaj JS, Schubert CM, Heuman DM, et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology. 2010; 138(7): c. 2332-2340.
  135. Rondanelli M, Solerte SB, Ferrari E. Electrolytes and cognitive function in the elderly: relationship between serum sodium and chloride concentrations and psychometric test scores. Panminerva Med. 1998; 40(3): c. 191-195. 
  136. Yeung DF, Hsu R. Expressive aphasia in a patient with chronic myelomonocytic leukemia. Springerplus. 2014; 3:406.  https://springerplus.springeropen.com/track/pdf/10.1186/2193-1801-3-406
  137. Yaffe K, Blackwell T, Whitmer R, et al. Glycosylated hemoglobin level and development of cognitive impairment or dementia in older women. The journal of nutrition, health & aging. 2006; 10: c. 293-295. 
  138. Binder J, Marczak A, Adler G. Glycosylated Hemoglobin and Cognitive Impairment in Patients at a Memory Clinic in Patients at a Memory Clinic. Int J Neurol Neurother. 2017; 4(069): c. 1-4. 
  139. Marden JR, Mayeda ER, Tchetgen EJ, et al. High Hemoglobin A1c and Diabetes Predict Memory Decline in the Health and Retirement Study. Alzheimer Dis Assoc Disord. 2017; 31(1): c. 48-54. 
  140. Rieben C, Segna D, da Costa BR, et al. Subclinical Thyroid Dysfunction and the Risk of Cognitive Decline: a Meta-Analysis of Prospective Cohort Studies. The Journal of Clinical Endocrinology & Metabolism. 2016; 101(12): c. 4945-4954.
  141. Brown J, Sardar L. An autoimmune cause of confusion in a patient with a background of hypothyroidism. Endocrinol Diabetes Metab Case Rep. 2019; 2019:19-0014. https://edm.bioscientifica.com/downloadpdf/journals/edm/2019/1/EDM19-0014.xml
  142. Krysiak R, Szkróbka W, Okopień B. Sexual function and depressive symptoms in young women with hypothyroidism receiving levothyroxine/liothyronine combination therapy: a pilot study. Current Medical Research and Opinion. 2018; 34(9): c. 1579-1586.
  143. Najafi L, Malek M, Hadian A, et al. Depressive symptoms in patients with subclinical hypothyroidism — the effect of treatment with levothyroxine: a double-blind randomized clinical trial. Endocrine Research. 2015; 40(3): c. 121-126. 
  144. Bottiglieri T, Laundy M, Crellin R, et al. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000; 69(2): c. 228-232. 
  145. Cho HS, Huang LK, Lee YT, et al. Suboptimal Baseline Serum Vitamin B12 Is Associated With Cognitive Decline in People With Alzheimer’s Disease Undergoing Cholinesterase Inhibitor Treatment. Front Neurol. 2018; 9(325): c. 1-5. 
  146. Moore E, Mander A, Ames D, et al. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr. 2012; 24(4): c. 541-556. 
  147. De Francesco D, Winston A, Underwood J, et al. Cognitive function, depressive symptoms and syphilis in HIV-positive and HIV-negative individuals. International Journal of STD & AIDS. 2019; 30(5): c. 440-446. 
  148. Marks M, Jarvis JN, Howlett W, et al. Neurosyphilis in Africa: A systematic review. PLoS Negl Trop Dis. 2017; 11(8): e0005880. https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0005880&type=printable
  149. Crozatti LL, de Brito MH, Lopes BN, de Campos FP. Atypical behavioral and psychiatric symptoms: Neurosyphilis should always be considered. Autops Case Rep. 2015; 5(3): c. 43-47. 
  150. Costiniuk CT, MacPherson PA. Neurocognitive and psychiatric changes as the initial presentation of neurosyphilis. CMAJ. 2013; 185(6): c. 499-503. 
  151. Miller ZA, Sturm VE, Camsari GB, et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: Completing the picture. Neurol Neuroimmunol Neuroinflamm. 2016; 3(6)
  152. Constantinides VC, Kasselimis DS, Paraskevas GP, et al. Anti-NMDA receptor encephalitis presenting as isolated aphasia in an adult. Neurocase. 2018; 24(4): c. 188-194. 
  153. Hebert J, El-Sadi F, Maurice C, et al. Adult-Onset Anti-N-methyl-D-aspartate-receptor Encephalitis Presenting as a Non-Fluent Aphasia. Canadian Journal of Neurological Sciences. 2018; 45(2): c. 248-251. 
  154. Ford AH, Almeida OP. Effect of Vitamin B Supplementation on Cognitive Function in the Elderly: A Systematic Review and Meta-Analysis. Drugs Aging. 2019; 36(5): c. 419-434. 
  155. Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018; 62(2): c. 561-570 
  156. McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015; 73(10): c. 723-735. 
  157. Hort J, O’Brien JT, Gainotti G, et al. EFNS guidelines for the diagnosis and management of Alzheimer`s Disease. Eur J Neurol. 2010; 17(10): c. 1236-1248.
  158. Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017; 16(8): c. 661-676. 
  159. Shea YF, Chu LW, Chan AO, et al. A systematic review of familial Alzheimer’s disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc. 2016; 115(2): c. 67-75. 
  160. Kowalska A. Poradnictwo i testowanie genetyczne dla rodzin z choroba Alzheimera. Genetic counseling and testing for families with Alzheimer’s disease]. Neurol Neurochir Pol. 2004; 38(6): c. 495-501. 
  161. Goldman JS, Hahn SE, Catania JW, et al. American College of Medical Genetics and the National Society of Genetic Counselors. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011; 13: c. 597-605. 
  162. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7(3): c. 263-269. 
  163. Forlenza OV. Radanovic M, Talib LL. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia. Alzheimer’s & Dementia. 2015; 1: c. 455-463. 
  164. Blennow K, Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer’sdisease. J. Alzheimers Dis. 2009; 18(2): c. 413-417. 
  165. Koelsch G. BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology. Molecules (Basel, Switzerland). 2017; 22(10):1723.
  166. Ritchie C, et al. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI) //Cochrane Database of Systematic Reviews. — 2017. — №. 3. 
  167. Ferreira D, et al. Meta-review of CSF core biomarkers in Alzheimer’s disease: the state-of-the-art after the new revised diagnostic criteria //Frontiers in aging neuroscience. — 2014. — T. 6. — c. 47. 
  168. Shaw LM, Arias J, Blennow K, et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 2018; 14(11): c. 1505-1521.
  169. Rosa M, Perucchi J, Medeiros LR, et al. Accuracy of cerebrospinal fluid Aβ(1-42) for Alzheimer’s disease diagnosis: a systematic review and meta-analysis. J Alzheimers Dis. 2014; 40(2): c. 443-454. 
  170. Wallin A, Kapaki E, Boban M, et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease — A consensus report. BMC Neurol. 2017; 17(1):102. 
  171. Moroney JT, Tang MX, Berglund L, et al. Low-density lipoprotein cholesterol and the risk of dementia with stroke. JAMA. 1999; 282(3): c. 254-260. 
  172. Anstey KJ, Ashby-Mitchell K, Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis. 2017; 56(1): c. 215-228. 
  173. Anstey KJ, Ashby-Mitchell K, Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis. 2017; 56(1): c. 215-228. 
  174. Appleton JP, Scutt P, Sprigg N, Bath PM. Hypercholesterolaemia and vascular dementia. Clin Sci (Lond). 2017; 131(14): c. 1561-1578.
  175. Rahemtullah A, Van Cott EM. Hypercoagulation testing in ischemic stroke. Arch Pathol Lab Med. 2007; 131(6): c. 890-901. 
  176. Engelborghs S. Clinical indications for analysis of Alzheimer’s disease CSF biomarkers. Rev Neurol (Paris) 2013; 169: c. 709-714. 
  177. Чердак М.А., Яхно Н.Н. Нейродегенеративные и сосудистые факторы развития постинсультных когнитивных расстройств. Неврологический журнал. 2012; 17(5): с. 10-15. 
  178. Tapiola T, Alafuzoff I, Herukka SK, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 2009; 66(3): c. 382-389 
  179. Rivero-Santana A, Ferreira D, Perestelo-Pérez L, et al. Cerebrospinal Fluid Biomarkers for the Differential Diagnosis between Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Systematic Review, HSROC Analysis, and Confounding Factors. J Alzheimers Dis. 2017; 55(2): c. 625-644. 
  180. Baldeiras I, Santana I, Leitão MJ, et al. Cerebrospinal fluid Aβ40 is similarly reduced in patients with Frontotemporal Lobar Degeneration and Alzheimer’s Disease. J Neurol Sci. 2015; 358(1-2): c. 308-316. 
  181. Irwin DJ, McMillan CT, Toledo JB, et al. Comparison of cerebrospinal fluid levels of tau and Aβ 1-42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol. 2012; 69(8): c. 1018-1025.
  182. Lleo A, Irwin DJ, Illán-Gala I, et al. A 2-Step Cerebrospinal Algorithm for the Selection of Frontotemporal Lobar Degeneration Subtypes. JAMA Neurol. 2018; 75(6): c. 738-745. 
  183. Ishiki A, Kamada M, Kawamura Y, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J. Neurochem. 2016; 136: c. 258-261. 
  184. van Harten AC, Kester MI, Visser PJ, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med. 2011; 49(3): c. 353-366. 
  185. Mukaetova-Ladinska EB, Monteith R, Perry EK. Cerebrospinal fluid biomarkers for dementia with Lewy bodies. International Journal of Alzheimer’s Disease 2010; 2010:536538,17 c 
  186. Ishiki A, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration //Journal of neurochemistry. — 2016. — T. 136. — №. 2. — c. 258-261. 
  187. Beynon R, Sterne JA, Wilcock G, et al. Is MRI better than CT for detecting a vascular component to dementia? A systematic review and meta-analysis. BMC Neurol. 2012; 12(33): c. 1-10. 
  188. Health Quality Ontario. The appropriate use of neuroimaging in the diagnostic work-up of dementia: an evidence-based analysis. Ont Health Technol Assess Ser. 2014; 14(1): c. 1-64. 
  189. Clarfield AM. The decreasing prevalence of reversible dementias: an updated meta‐analysis. Arch Intern Med 2003; 163: c. 2219-2229.
  190. Jelic V, Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci. 2009; 40: c. 129-142. 
  191. Wieser HG, Schindler K, Zumsteg D. EEG in Creutzfeldt–Jakob disease. Clin Neurophysiol. 2006; 117: c. 935-951. 
  192. Liedorp M, van der Flier WM, Hoogervorst EL, et al. Associations between patterns of EEG abnormalities and diagnosis in a large memory clinic cohort. Dement Geriatr Cogn Disord. 2009; 27: c. 18-23. 
  193. De Flores R, La Joie R, Chételat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 2015; 309: c. 29-50. 
  194. Frisoni GB, Jack CR. HarP: the EADC-ADNI harmonized protocol for manual hippocampal segmentation. A standard of reference from a global working group. Alzheimers Dement. 2015; 11: c. 107-110. 
  195. Ledig C, Schuh A, Guerrero R, et al. Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep. 2018; 8:11258.
  196. Park M, Moon WJ. Structural MR Imaging in the Diagnosis of Alzheimer’s Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol. 2016; 17(6): c. 827-845. 
  197. Scheltens P, Launer LJ, Barkhof F, et al. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol. 1995; 242: c. 557-560. 
  198. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in «probable» Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992; 55: c. 967-972. 
  199. Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with flutemetamol for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11: CD012884.
  200. Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with florbetaben for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11 
  201. Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11: CD012216.
  202. Haan MN, et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging //The American journal of clinical nutrition. — 2007. — T. 85. — №. 2. — c. 511-517. 
  203. Valotassiou V, Malamitsi J, Papatriantafyllou J, et al. SPECT and PET imaging in Alzheimer’s disease. Annals of Nuclear Medicine. 2018; 32(12): c. 1-11. 
  204. Zhao Q, Chen X, Zhou Y. Quantitative multimodal multiparametric imaging in Alzheimer’s disease. Brain Inform. 2016; 3(1): c. 29-37. 
  205. He W, Liu D, Radua J, et al. Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer’s disease and MCI. Cell Biochem Biophys. 2015; 71(1): c. 17-26. 
  206. Kantarci K. Magnetic Resonance Spectroscopy in Common Dementias. Neuroimag Clin N Am. 2013; 23: c. 393-406. 
  207. Sachdev PS, Lipnicki DM, Kochan NA, et al. The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS One. 2015; 10(11)
  208. Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer disease and associated disorders. 2014; 28(3): c. 206-218. 
  209. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Work Group. Neurology. 1993; 43: c. 250-260. 
  210. Filippi M, Agosta F, Barkhof F. EFNS task force: the use of neuroimaging in the diagnosis of Dementia. European Journal of Neurology. 2012; 19: c. 1487-1511.
  211. van Straaten EC, Scheltens P, Knol DL, et al. Operational definitions for the NINDS‐AIREN criteria for vascular dementia: an interobserver study. Stroke 2003; 34: c. 1907-1912.
  212. Fazekas F, Chawluk J, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AmJ. Roentgenol. 1987; 149(2): c. 351-356. 
  213. Dichgans M, Leys D. Vascular Cognitive Impairment. Circ. Res. 2017; 120(3): c. 573-591. 
  214. Одинак М.М., Воробьев С.В., Фокин В.А. и др. Магнитно-резонансная морфометрия в дифференциальной диагностике посттравматических когнитивных нарушений. Неврология, нейропсихиатрия, психосоматика 2014; 2: с. 13-18 
  215. Arangalage D, Ederhy S, Dufour L, et al. Relationship between cognitive impairment and echocardiographic parameters: a review. J Am Soc Echocardiogr. 2015; 28(3): c. 264-274. 
  216. Ding M, Qiu c. Atrial Fibrillation, Cognitive Decline, and Dementia: an Epidemiologic Review. Curr Epidemiol Rep. 2018; 5(3): c. 252-261. 
  217. Santangeli P, Di Biase L, Bai R, et al. Atrial fibrillation and the risk of incident dementia: a meta-analysis. Heart Rhythm. 2012; 9(11): c. 1761-1768.
  218. Islam MM, Poly TN, Walther BA, et al. Association Between Atrial Fibrillation and Dementia: A Meta-Analysis. Front Aging Neurosci. 2019; 11(305): c. 1-15. 
  219. Dagres N, Chao TF, Fenelon G, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/AsiaPacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society(LAHRS) expert consensus on arrhythmias and cognitive function: what is the best practice? Europace 2018; 20: c. 1399-1421.
  220. Malojcic B, Giannakopoulos P, Sorond FA, et al. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer’s disease. BMC Med. 2017; 15(1):27.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299782/pdf/12916_2017_Article_799.pdf
  221. Wendell CR, Waldstein SR, Ferrucci L, et al. Carotid atherosclerosis and prospective risk of dementia. Stroke. 2012; 43(12): c. 3319-3324.
  222. Li X, Ma X, Lin J, et al. Severe carotid artery stenosis evaluated by ultrasound is associated with post stroke vascular cognitive impairment. Brain Behav. 2017; 7: e00606. https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.606
  223. Яхно Н.Н., Федорова Т.С., Дамулин И.В. и др. Влияние каротидной эндартерэктомии на динамику когнитивных нарушений у пациентов с атеросклеротическим стенозом сонных артерий. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011; 111(3): с. 31-37. 
  224. Bisenius S, Neumann J. and Schroeter ML. Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta‐analyses. Eur J Neurol. 2016; 23: c. 704-712. 
  225. Schroeter ML, Neumann J. Combined Imaging Markers Dissociate Alzheimer’s Disease and Frontotemporal Lobar Degeneration — An ALE Meta-Analysis. Front Aging Neurosci. 2011; 3:10.  https://www.frontiersin.org/articles/10.3389/fnagi.2011.00010/pdf
  226. Schroeter ML, Laird AR, Chwiesko C, et al. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses — the case of behavioral variant frontotemporal dementia. Cortex. 2014; 57: c. 22-37. 
  227. Fathy YY, Hoogers SE, Berendse HW, et al. Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis. Brain Imaging and Behavior. 2019. https://link.springer.com/content/pdf/10.1007/s11682-019-00099-3.pdf
  228. Chapleau M, Aldebert J, Montembeault M, Brambati S. Atrophy in Alzheimer’s Disease and Semantic Dementia: An ALE Meta-Analysis of Voxel-Based Morphometry Studies. Journal of Alzheimer’s Disease 2016; 54(3): c. 941-955. 
  229. Cerami C, et al. Motor neuron dysfunctions in the frontotemporal lobar degeneration spectrum: A clinical and neurophysiological study. J Neurol Sci. 2015; 351(1-2): c. 72-77. 
  230. Chester C, de Carvalho M, Miltenberger G, et al. Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotroph Lateral Scler Frontotemporal Degener. 2013; 14(1): c. 70-72. 
  231. Benatar M, Wuu J, Fernandez C, et al. Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology. 2013; 80(20): c. 1874-1880.
  232. Cantone M, Di Pino G, Capone F, et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clinical Neurophysiology. 2014; 125(8): c. 1509-1532.
  233. Benussi A, Di Lorenzo F, Dell’Era V, et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017; 89 (7): c. 665-672. 
  234. Pierantozzi M, Panella M, Palmieri MG, et al. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clinical Neurophysiology. 2004; 115(10): c. 2410-2418.
  235. Burton EJ, et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009; 132(1): c. 195-203. 
  236. Harper L, Fumagalli GG, Barkhof F, et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain. 2016; 139(4): c. 1211-1225.
  237. Nedelska Z, Ferman TJ, Boeve BF, et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiology of aging. 2015; 36(1): c. 452-461. 
  238. Barber R, Ballard C, McKeith IG, et al. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology. 2000; 54(6): c. 1304-1309.
  239. Barber R, Scheltens P, Gholkar A, et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. Journal of Neurology, Neurosurgery & Psychiatry. 1999; 67(1): c. 66-72. 
  240. Чимагомедова А.Ш., Зорина Н.А., Араблинский А.В., Левин О.С. Клинико-визуализационная гетерогенность деменции с тельцами Леви. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019; 119(9): с. 25-31. 
  241. Komatsu J, Samuraki M, Nakajima K, et al. 123I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 3-year follow-up study. J Neurol Neurosurg Psychiatry. 2018; 89(11): c. 1167-1173.
  242. Yoshita M, et al. Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study //PloS one. — 2015. — T. 10. — №. 3. — c. e0120540.
  243. Bonanni L, Thomas A, Tiraboschi P, et al. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain. 2008; 131(3): c. 690-705. 
  244. Bonanni L, Perfetti B, Bifolchetti S, et al. Quantitative electroencephalogram utility in predicting conversion of mild cognitive impairment to dementia with Lewy bodies. Neurobiology of aging. 2015; 36(1): c. 434-445. 
  245. Colloby SJ, Cromarty RA, Peraza LR, et al. Multimodal EEG-MRI in the differential diagnosis of Alzheimer’s disease and dementia with Lewy bodies. Journal of psychiatric research. 2016; 78: c. 48-55. 
  246. van der Zande JJ, Gouw AA, van Steenoven I, et al. EEG characteristics of dementia with Lewy bodies, Alzheimer’s disease and mixed pathology. Frontiers in aging neuroscience. 2018; 10(190): c. 1-10.  https://www.frontiersin.org/articles/10.3389/fnagi.2018.00190/full
  247. Breton A, Casey D, Arnaoutoglou NA. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int J Geriatr Psychiatry. 2019; 34(2): c. 233-242. 
  248. DSBelleville S, Fouquet C, Hudon C, et al. Neuropsychological Measures that Predict Progression from Mild Cognitive Impairment to Alzheimer’s type dementia in Older Adults: a Systematic Review and Meta-Analysis. Neuropsychol Rev. 2017; 27: c. 328-353. 
  249. Borson S, Scanlan JM, Chen PJ, et al. The Mini-Cog as a screen for dementia: Validation in a population-based sample. J Am Geriatr Soc 2003; 51: c. 1451-1454.
  250. Гуторова Д.А., Васенина Е.Е., Левин О.С. Скрининг когнитивных нарушений у лиц пожилого и старческого возраста с помощью шкалы 3-КТ. Журнал неврологии и психиатрии им. С.С. Корсакова, Спецвыпуски. 2016; 116(6): с. 35-40. 
  251. Apostolova LG, Cummings JL. Neuropsychiatric manifestations in mild cognitive impairment: a systematic review of the literature. Dement Geriatr Cogn Disord. 2008; 25(2): c. 115-126. 
  252. Aalten P, Verhey FR, Boziki M, et al. Consistency of neuropsychiatric syndromes across dementias: results from the European Alzheimer Disease Consortium. Part II. Dement Geriatr Cogn Disord. 2008; 25(1): c. 1-8. 
  253. Cordell CB, Borson S, Boustani M, et al. Medicare Detection of Cognitive Impairment Workgroup. Alzheimer’s Association recommendations for operationalizing the detection of cognitive. Alzheimer’s & Dementia. 2013; 9: c. 141-150. 
  254. Prado CE, Watt S, Treeby MS, Crowe SF. Performance on neuropsychological assessment and progression to dementia: A meta-analysis. Psychol Aging. 2019; 34(7): c. 954-977. 
  255. Fage BA, Chan CC, Gill SS, et al. Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a community setting. Cochrane Database Syst Rev. 2015; 3(2): CD010860.
  256. Seitz DP, Chan CC, Newton HT, et al. Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a primary care setting. Cochrane Database Syst Rev. 2018; 2: CD011415.
  257. Chan CC.H, Fage BA, Burton JK, et al. Mini‐Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a secondary care setting. Cochrane Database of Systematic Reviews 2019; 9: CD011414.
  258. Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): c. 1143-1153.
  259. Feldman HH, Jacova C, Robillard A, et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ. 2008; 178(7): c. 825-836. 
  260. Lindbergh CA, Dishman RK, Miller LS. Functional Disability in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Neuropsychol Rev. 2016; 26(2): c. 129-159. 
  261. Castilla-Rilo J, López-Arrieta J, Bermejo-Pareja F, et al. Instrumental activities of daily living in the screening of dementia in population studies: a systematic review and meta-analysis. Int J Geriatr Psychiatry. 2007; 22(9): c. 829-836. 
  262. Gallagher D, Fischer CE, Iaboni A. Neuropsychiatric Symptoms in Mild Cognitive Impairment. Can J Psychiatry. 2017; 62(3): c. 161-169. 
  263. Sorbi S, Hort J, Erkinjuntti T, et al. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012; 19(9): c. 1159-1179.
  264. Backhouse A, Ukoumunne OC, Richards DA, et al. The effectiveness of community-based coordinating interventions in dementia care: a meta-analysis and subgroup analysis of intervention components. BMC Health Serv Res. 2017; 17:717. 
  265. Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: c. 115-121. 
  266. Di Carlo A, Lamassa M, Baldereschi M, et al. CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology 2007; 68: c. 1909-1916.
  267. Lopez OL, Kuller LH, Becker JT, et al. Incidence of dementia in mild cognitive impairment in the Cardiovascular Health Study Cognition Study. Arch Neurol. 2007; 64: c. 416-420. 
  268. Huey ED, Manly JJ, Tang MX, et al. Course and etiology of dysexecutive MCI in a community sample. Alzheimers Dement. 2013; 9: c. 632-639. 
  269. Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12(3): c. 189-198. 
  270. Arevalo-Rodriguez I, Smailagic N, Roqué I, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015;(3): CD010783. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010783.pub2/epdf/full
  271. Creavin ST, Wisniewski S, Noel-Storr AH, et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst Rev. 2016;(1): CD011145. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011145.pub2/epdf/full
  272. Cordell CB, et al. Alzheimer’s Association recommendations for operationalizing the detection of cognitive impairment during the Medicare Annual Wellness Visit in a primary care setting. Alzheimer’s & Dementia. 2013; 9(2): c. 141-150. 
  273. Belleville S, et al. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychology review. 2017; 27(4): c. 328-353. 
  274. Левин О.С. Алгоритмы диагностики и лечения деменции / О.С.Левин.–8-е изд.–М.: МЕДпресс-информ, 2017; 192 с 
  275. Захаров В.В., Вознесенская Т.Г. Нервно-психические нарушения: диагностические тесты / под общ. ред. акад. РАН Н.Н.Яхно. 6-е изд. М.: МЕДпреcс-информ, 2018; 320 с 
  276. Ghafar MZ.AA, Miptah HN, O’Caoimh R. Cognitive screening instruments to identify vascular cognitive impairment: A systematic review. Int J Geriatr Psychiatry. 2019; 34(8): c. 1114-1127.
  277. McGovern A, Pendlebury ST, Mishra NK, et al. Test Accuracy of Informant-Based Cognitive Screening Tests for Diagnosis of Dementia and Multidomain Cognitive Impairment in Stroke. Stroke. 2016; 47(2):329-335. 
  278. Moulin S, Leys D. Stroke occurring in patients with cognitive impairment or dementia. Arquivos de Neuro-Psiquiatria. 2017; 75(2): c. 117-121. 
  279. Чердак М.А. Клиническая гетерогенность постинсультных когнитивных расстройств. Неврологический журнал. 2017; 22(5): с. 259-266 
  280. Coleman K, Coleman B, MacKinley J, et al. Detection and Differentiation of Frontotemporal Dementia and Related Disorders From Alzheimer Disease Using the Montreal Cognitive Assessment. Alzheimer Disease & Associated Disorders. 2016; 30(3): c. 258-263. 
  281. Deutsch MB, Liang LJ, Jimenez EE, et al. Are we comparing frontotemporal dementia and Alzheimer disease patients with the right measures?.Int Psychogeriatr. 2016; 28(9): c. 1481-1485.
  282. Rosen HJ, et al. Neuropsychological and functional measures of severity in Alzheimer disease, frontotemporal dementia, and semantic dementia. Alzheimer Disease and Associated Disorders. 2004; 18: c. 202-207. 
  283. Freitas S, Simões MR, Alves L, et al. Montreal Cognitive Assessment (MoCA): Validation study for Frontotemporal Dementia. Journal of Geriatric Psychiatry and Neurology. 2012; 25(3): c. 146-154. 
  284. Левин О.С. и др. Валидизация русскоязычной версии модифицированной Адденбрукской когнитивной шкалы для диагностики болезни Альцгеймера //Журнал неврологии и психиатрии. — 2015. — №. 2. — с. 36-39. 
  285. Hsieh S, Schubert S, Hoon C, et al. Validation of the Addenbrooke’s Cognitive Examination III in Frontotemporal Dementia and Alzheimer’s Disease. Dement Geriatr Cogn Disord 2013; 36: c. 242-250. 
  286. Canu E, et al. Multiparametric MRI to distinguish early onset Alzheimer’s disease and behavioural variant of frontotemporal dementia //NeuroImage: Clinical. — 2017. — T. 15. — c. 428-438. 
  287. So M, et al. Addenbrooke’s cognitive examination III: psychometric characteristics and relations to functional ability in dementia //Journal of the International Neuropsychological Society. — 2018. — T. 24. — №. 8. — c. 854-863. 
  288. Milan G, Lamenza F, Iavarone A, et al. Frontal Behavioural Inventory in the differential diagnosis of dementia. Acta Neurologica Scandinavica. 2008; 117: c. 260-265. 
  289. Iavarone A, Ronga B, Pellegrino L, et al. The Frontal Assessment Battery (FAB): normative data from an Italian sample and performances of patients with Alzheimer’s disease and frontotemporal dementia. Funct Neurol. 2004; 19(3): c. 191-195. 
  290. Stamelou M, Diehl-Schmid J, Hapfelmeier A, et al. The frontal assessment battery is not useful to discriminate progressive supranuclear palsy from frontotemporal dementias. Parkinsonism Relat Disord. 2015; 21(10): c. 1264-1268.
  291. Castiglioni S, Pelati O, Zuffi M, et al. The Frontal Assessment Battery Does Not Differentiate Frontotemporal Dementia from Alzheimer’s Disease. Dement Geriatr Cogn Disord 2006; 22: c. 125-131. 
  292. Alberici A, Geroldi C, Cotelli M, et al. The Frontal Behavioural Inventory (Italian version) differentiates frontotemporal lobar degeneration variants from Alzheimer’s disease. Neurol Sci. 2007; 28: c. 80-86. 
  293. Slachevsky A, Villalpando JM, Sarazin M, et al. Frontal Assessment Battery and Differential Diagnosis of Frontotemporal Dementia and Alzheimer Disease. Arch Neurol. 2004; 61(7): c. 1104-1107.
  294. Gainotti G. The format of conceptual representations disrupted in semantic dementia: A position paper. Cortex. 2012; 48(5): c. 521-529. 
  295. Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009; 19(12): c. 2767-2796.
  296. Berndt RS, Mitchum CC, Haendiges AN. Comprehension of reversible sentences in “agrammatism”: a meta-analysis. Cognition. 1996; 58(3): c. 289-308. 
  297. Faroqi-Shah Y. Are regular and irregular verbs dissociated in non-fluent aphasia?: A meta-analysis. Brain Research Bulletin. 2007; 74(1-3): c. 1-13. 
  298. Meyer AM, Mack JE, Thompson CK. Tracking Passive Sentence Comprehension in Agrammatic Aphasia. J Neurolinguistics. 2012; 25(1): c. 31-43. 
  299. Bertoux M, de Souza LC, O’Callaghan C, et al. Social Cognition Deficits: The Key to Discriminate Behavioral Variant Frontotemporal Dementia from Alzheimer’s Disease Regardless of Amnesia? Journal of Alzheimer’s Disease. 2016; 49(4): c. 1065-1074.
  300. Mathias JL, Morphett K. Neurobehavioral differences between Alzheimer’s disease and frontotemporal dementia: A meta-analysis, Journal of Clinical and Experimental Neuropsychology. 2010; 32(7): c. 682-698. 
  301. Hutchings R, Palermo R, Piguet O, et al. Disrupted Face Processing in Frontotemporal Dementia: A Review of the Clinical and Neuroanatomical Evidence. Neuropsychol Rev. 2017; 27: c. 18-22. 
  302. Harciarek M, Cosentino S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry. 2013; 25(2): c. 178-196. 
  303. Savage SA, Lillo P, Kumfor F, et al. Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2014; 15(1-2): c. 39-46. 
  304. Hutchinson AD, Mathias JL. Neuropsychological deficits in frontotemporal dementia and Alzheimer’s disease: a meta-analytic review. J Neurol Neurosurg Psychiatry. 2007; 78(9): c. 917-928. 
  305. Johnen A, Bertoux M. Psychological and Cognitive Markers of Behavioral Variant Frontotemporal Dementia-A Clinical Neuropsychologist’s View on Diagnostic Criteria and Beyond. Front Neurol. 2019; 10:594.  https://www.frontiersin.org/articles/10.3389/fneur.2019.00594/pdf
  306. Poos J, Jiskoot L, Papma J, et al. Meta-analytic Review of Memory Impairment in Behavioral Variant Frontotemporal Dementia. Journal of the International Neuropsychological Society. 2018; 24(6): c. 593-605. 
  307. Eikelboom WS, Janssen N, Jiskoot LC, et al. Episodic and working memory function in Primary Progressive Aphasia: A meta-analysis. Neuroscience & Biobehavioral Reviews. 2018; 92: c. 243-254. 
  308. Чимагомедова А.Ш., Ляшенко Е.А., Бабкина О.В. и соавт. Социальные когнитивные функции при нейродегенеративных заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017; 117(11): с. 168-173. 
  309. Biundo R, Weis L, Bostantjopoulou S, et al. MMSE and MoCA in Parkinson’s disease and dementia with Lewy bodies: a multicenter 1-year follow-up study. Journal of Neural Transmission. 2016; 123(4): c. 431-438. 
  310. Wang CS.M, Pai MC, Chen PL, et al. Montreal Cognitive Assessment and Mini-Mental State Examination performance in patients with mild-to-moderate dementia with Lewy bodies, Alzheimer’s disease, and normal participants in Taiwan. International psychogeriatrics. 2013; 25(11): c. 1839-1848.
  311. Shimomura T, Mori E, Yamashita H, et al. Cognitive loss in dementia with Lewy bodies and Alzheimer disease. Archives of Neurology. 1998; 55(12): c. 1547-1552.International psychogeriatrics. 2013; 25(11): c. 1839-1848.
  312. Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005; 62: c. 925-930. 
  313. Hamilton JM, Salmon DP, Galasko D, et al. Visuospatial deficits predict rate of cognitive decline in autopsy-verified dementia with Lewy bodies. Neuropsychology. 2008; 22(6): c. 729-737. 
  314. Mori E, Shimomura T, Fujimori M, et al. Visuoperceptual impairment in dementia with Lewy bodies. Archives of Neurology. 2000; 57(4): c. 489-493. 
  315. Song D, Yu DS.F, Li PW.C, Lei Y. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: A systematic review and meta-analysis. Int J Nurs Stud. 2018; 79: c. 155-164. 
  316. Zhou S, Chen S, Liu X, Zhang Y, Zhao M, Li W. Physical Activity Improves Cognition and Activities of Daily Living in Adults with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health. 2022; 19:1216. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8834999/pdf/ijerph-19-01216.pdf
  317. Pisani S, Mueller C, Huntley J, Aarsland D, Kempton MJ. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int. J. Geriatr. Psychiatry. 2021; 36(10): c.1471-1487.
  318. Zhu Y, Zhong Q, Ji J, et al. Effects of Aerobic Dance on Cognition in Older Adults with Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2020;74(2): c. 679-690. 
  319. Northey JM, Cherbuin N, Pumpa KL, et al. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018; 52(3): c. 154-160. 
  320. Barha CK, Davis JC, Falck RS, et al. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017; 46: c. 71-85. 
  321. Chandler MJ, Parks AC, Marsiske M, et al. Everyday Impact of Cognitive Interventions in Mild Cognitive Impairment: a Systematic Review and Meta-Analysis. Neuropsychol Rev. 2016; 26(3): c. 225-251. 
  322. Hill NT, Mowszowski L, Naismith SL, et al. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J Psychiatry. 2017; 174(4): c. 329-340. 
  323. Wang YY, Yang L, Zhang J, et al. The Effect of Cognitive Intervention on Cognitive Function in Older Adults With Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2022; 32: c. 247-273. 
  324. Cafferata RM.T, Hicks B, von Bastian CC. Effectiveness of cognitive stimulation for dementia: A systematic review and meta-analysis. Psychol Bull. 2021;147(5): c. 455-476. 
  325. Sherman DS, Mauser J, Nuno M, Sherzai D. The Efficacy of Cognitive Intervention in Mild Cognitive Impairment (MCI): a Meta-Analysis of Outcomes on Neuropsychological Measures. Neuropsychol Rev. 2017; 27(4): c. 440-484. 
  326. Киндарова А.А., Фанталис Д., Преображенская И.С. Нелекарственная терапия когнитивных нарушений: методические рекомендации по проведению когнитивного тренинга. Медицинский Совет. 2022;(11): с. 18-26. 
  327. Singh B, Parsaik AK, Mielke MM, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014; 39(2): c. 271-282. 
  328. Morris MC, Tangney CC, Wang Y, et al. MIND diet score more predictive than DASH or Mediterranean diet scores. Alzheimers Dement. 2015; 11: c. 1015-1022.
  329. Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization, 2019; 96 c. 
  330. Williamson JD, Pajewski NM, Auchus AP. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019; 321(6): c. 553-561. 
  331. Beishon LC, Harrison JK, Harwood RH, et al. The evidence for treating hypertension in older people with dementia: a systematic review. J Hum Hypertens. 2014; 28(5): c. 283-287. 
  332. Axelsson J, Reinprecht F, Siennicki-Lantz A, Elmstahl S. Low ambulatory blood pressure is associated with lower cognitive function in healthy elderly men. Blood Press. Monit. 2008; 13: c. 269-275. 
  333. Huang C.-Q, Dong B.-R, Zhang Y.-L, et al. Cognitive impairment and hypertension among Chinese nonagenarians and centenarians. Hypertens. Res. 2009; 32: c. 554-558. 
  334. Forte G, De Pascalis V, Favieri F, Casagrande M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J Clin Med. 2019; 9(1):34.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019226/pdf/jcm-09-00034.pdf
  335. Beydoun MA, Beydoun HA, Gamaldo AA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014; 14:643.  https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/1471-2458-14-643
  336. Pieper NT, Grossi CM, Chan WY, et al. Anticholinergic drugs and incident dementia, mild cognitive impairment and cognitive decline: a meta-analysis. Age Ageing. 2020; 49(6): c. 939-947. 
  337. Petersen RC, Lopez OL, Armstrong MJ. Practice guideline update summary: Mild cognitive impairment. Neurology 2018; 90: c. 126-135. 
  338. Green AR, Oh E, Hilson L, et al. Anticholinergic burden in older adults with mild cognitive impairment. JAm. Geriatr. Soc. 2016; 64: e313–e314.
  339. American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics society updated beers criteria for potentially inappropriate medication use in older adults. JAm. Geriatr. Soc. 2012; 60: c. 616-631. 
  340. O’Mahony D, O’Sullivan D, Byrne S, et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015; 44: c. 213-218. 
  341. Gavrilova SI, Preuss UW, Wong JW, et al. Efficacy and safety of Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: a randomized, placebo‐controlled, double‐blind, multi‐center trial. Int J Geriatr Psychiatry. 2014; 29:1087-1095.
  342. Zhao MX, Dong ZH, Yu ZH, et al. Effects of Ginkgo biloba extract in improving episodic memory of patients with mild cognitive impairment: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2012; 10: c. 628-634. 
  343. Grass-Kapanke B, Busmane A, Lasmanis A, Hoerr R, Kaschel R. Effects of Ginkgo Biloba Special Extract EGb 761® in Very Mild Cognitive Impairment (vMCI). Neuroscience and Medicine. 2011; 2(1): c. 48-56. 
  344. Kasper S, Bancher C, Eckert A, et al. Management of mild cognitive impairment (MCI): The need for national and international guidelines. World J Biol Psychiatry. 2020; 5: c. 1-16. 
  345. Kandiah N, Ong PA, Yuda T, et al. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: Expert consensus on the use of Ginkgo biloba extract, EGb 761®. CNS Neurosci Ther. 2019; 25(2): c. 288-298. 
  346. DeKosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008; 300: c. 2253-2262.
  347. Vellas B, Coley N, Ousset PJ, et al. Long‐term use of standardized Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo‐controlled trial. Lancet Neurol. 2012; 11: c. 851-859. 
  348. Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI: a 48week randomized, placebo-controlled trial. Neurology 2009; 72: c. 1555-1561.
  349. Salloway S, Ferris S, Kluger A, et al. Efficacy of donepezil in mild cognitive impairment: A randomized placebo-controlled trial. Neurology 2004; 63: c. 651-657. 
  350. Winblad B, Gauthier S, Scinto L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology 2008; 70: c. 2024-2035.
  351. Feldman HH, Ferris S, Winblad B, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol 2007; 6: c. 501-512. 
  352. Knight R, Khondoker M, Magill N, et al. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dementia and Geriatric Cognitive Disorders. 2018; 45: c. 131-151. 
  353. Na R, Yang JH, Yeom Y, et al. A Systematic Review and Meta-Analysis of Nonpharmacological Interventions for Moderate to Severe Dementia. Psychiatry Investig. 2019; 16(5): c. 325-335. 
  354. Zhang N, Wei C, Du H, et al. The Effect of Memantine on Cognitive Function and Behavioral and Psychological Symptoms in Mild-to-Moderate Alzheimer’s Disease Patients. Dement. Geriatr. Cogn. Disord. 2015; 40(1-2): c. 85-93. 
  355. Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018; 6(6): CD001190. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001190.pub3/pdf/CDSR/CD001190/CD001190.pdf
  356. Wilkinson D, Andersen HF. Analysis of the Effect of Memantine in Reducing the Worsening of Clinical Symptoms in Patients with Moderate to Severe Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders. 2007; 24(2): c. 138-145. 
  357. McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev. 2019; 3: CD003154. https://doi.org/10.1002/14651858.CD003154.pub6
  358. Kishi T, Matsunaga S, Oya K, et al. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimers Dis. 2017; 60(2): c. 401-425. 
  359. Doody RS, Tariot PN, Pfeiffer E, et al. Meta-analysis of six-month memantine trials in Alzheimer’s disease. Alzheimer’s & Dementia. 2007; 3: c. 7-17. 
  360. Cummings J, Lai Te-Jen, Hemrungrojn S, et al. Role of Donepezil in the Management of Neuropsychiatric Symptoms in Alzheimer’s Disease and Dementia with Lewy Bodies. CNS Neuroscience & Therapeutics. 2016; 22: c. 159-166. 
  361. Yunusa I, Alsumali A, Garba AE, et al. Assessment of Reported Comparative Effectiveness and Safety of Atypical Antipsychotics in the Treatment of Behavioral and Psychological Symptoms of Dementia: A Network Meta-analysis. JAMA Netw Open. 2019; 2(3): e190828. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2728618
  362. Randle JM, Heckman G, Oremus M, Ho J. Intermittent Antipsychotic Medication, and Mortality in Institutionalized Older Adults: A Scoping Review Int J Geriatr Psychiatry. 2019; 34: c. 906-920. 
  363. Leucht S, Wahlbeck K, Hamann J, Kissling W. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. The Lancet. 2003; 361(9369): c. 1581-1589.
  364. Schneider LS, Dagerman K, Insel PS. Efficacy and adverse effects of atypical antipsychotics for dementia: meta-analysis of randomized, placebo-controlled trials. Am J Geriatr Psychiatry. 2006; 14(3): c. 191-210. 
  365. Trifiro G, Spina E, Gambassi G. Use of antipsychotics in elderly patients with dementia: do atypical and conventional agents have a similar safety profile? Pharmacol Res. 2009; 59(1): c. 1-12. 
  366. Marvanova M. Mental Health Clinician Antipsychotic use in elderly patients with dementia: Efficacy and safety concerns. 2014; 4(4): c. 170-176. 
  367. Clark WS, Street JS, Feldman PD, Breier A. The effects of olanzapine in reducing the emergence of psychosis among nursing home patients with Alzheimer’s disease. J. Clin. Psychiatry. 2001; 62(1):34-40. 
  368. Cummings JL, Street J, Masterman D, Clark WS. Efficacy of olanzapine in the treatment of psychosis in dementia with Lewy bodies. Dementia and geriatric cognitive disorders. 2002; 13(2): c. 67-73. 
  369. De Deyn PP, Carrasco MM, Deberdt W. Olanzapine versus placebo in the treatment of psychosis with or without associated behavioral disturbances in patients with Alzheimer’s disease. Internationaljournalofgeriatricpsychiatry.2004;19(2):c.115-126.
  370. Zangani C, Giordano B, Stein HC, Bonora S, Ostinelli EG, D’Agostino A. Efficacy of tiapride in the treatment of psychiatric disorders: A systematic review. Hum. Psychopharmacol. 2022; 37(5): e2842. https://onlinelibrary.wiley.com/doi/epdf/10.1002/hup.2842
  371. Robert PH, Allain H. Clinical management of agitation in the elderly with tiapride. European Psychiatry: The Journal of the Association of European Psychiatrists. 2001; 16(Suppl 1): c. 42-47. 
  372. Gareri P, Segura-García C, Manfredi VG, Bruni A, Ciambrone P, et al. Use of atypical antipsychotics in the elderly: A clinical review. Clinical Interventions in Aging. 2014; 9: c. 1363-1373.
  373. Dolder CR, Nealy KL, McKinsey J. Valproic acid in dementia: does an optimal dose exist? J. Pharm. Pract. 2012; 25(2): c. 142-150. 
  374. Greenstein A, Chen A, Copeli F, et al. Gabapentin for behavioral and psychiatric symptoms of dementia. The American Journal of Geriatric Psychiatry. 2020; 28(4), Supplement: c. S85. 
  375. Suzuki H, Gen K. Clinical efficacy of lamotrigine and changes in the dosages of concomitantly used psychotropic drugs in Alzheimer’s disease with behavioural and psychological symptoms of dementia: a preliminary open-label trial. Psychogeriatrics. 2015; 15(1): c. 32-37. 
  376. Rabins PV, Blacker D, Rovner BW, et al. American Psychiatric Association practice guideline for the treatment of patients with Alzheimer’s disease and other dementias, second edition. Am J Psychiatry. 2007; 164(12 Suppl): c. 5-56. 
  377. Mulsant BH, Blumberger DM, Ismail Z, et al. A systematic approach to the pharmacotherapy of geriatric major depression. Clin Geriatr Med. 2014; 30(3): c. 517-534. 
  378. Bennabi D, Yrondi A, Charpeaud T, et al. Clinical guidelines for the management of depression with specific comorbid psychiatric conditions. French recommendations from experts (the French Association for Biological Psychiatry and Neuropsychopharmacology and the fondation FondaMental). BMC Psychiatry. 2019; 19(1):50.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354367/pdf/12888_2019_Article_2025.pdf
  379. An H, Choi B, Park K.‐W, et al. The effect of escitalopram on mood and cognition in depressive Alzheimer’s disease subjects. Journal of Alzheimer’s disease 2017; 2: c. 727-735. 
  380. Sharp SI, Ballard CG, Ziabreva I, et al. Cortical Serotonin 1A Receptor Levels Are Associated with Depression in Patients with Dementia with Lewy Bodies and Parkinson’s Disease Dementia. Dement Geriatr Cogn Disord. 2008; 26: c. 330-338. 
  381. He Y, Li H, Huang J, et al. Efficacy of antidepressant drugs in the treatment of depression in Alzheimer disease patients: A systematic review and network meta-analysis. J. Psychopharmacol. 2021;35(8): c. 901-909. 
  382. Buciuta A, Vinasi RC, Coman HG. Antidepressant Treatment for Depression in Alzheimer’s Dementia: Systematic Review Article. Journal of Aging Science. 2020; 8(3):1000229. https://www.longdom.org/pdfdownload.php?download=open-access/antidepressant-treatment-for-depression-in-alzheimers-dementia-systematic-review-article.pdf&aid=54498
  383. Bishop MM, Fixen DR, Linnebur SA, Pearson SM. Cognitive effects of vortioxetine in older adults: a systematic review. Ther Adv Psychopharmacol. 2021; 11:20451253211026796. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851129/
  384. Dudas R, Malouf R, McCleery J, Dening T. Antidepressants for treating depression in dementia. Cochrane Database Syst Rev. 2018; 8(8): CD003944. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003944.pub2/epdf/full
  385. Nelson JC, Devanand DP. A systematic review and meta-analysis of placebo-controlled antidepressant studies in people with depression and dementia. J Am Geriatr Soc. 2011; 59(4): c. 577-585. 
  386. Sepehry AA, Lee PE, Hsiung GY, Beattie BL, Jacova c. Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: a meta-analysis of depression and cognitive outcomes. Drugs Aging. 2012; 29(10): c. 793-806. 
  387. Kinnunen KM, Vikhanova A, Livingston G. The management of sleep disorders in dementia: an update. Curr Opin Psychiatry. 2017; 30(6): c. 491-497. 
  388. Ooms S, Ju YE. Treatment of Sleep Disorders in Dementia. Curr Treat Options Neurol. 2016; 18(9):40.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363179/pdf/nihms852926.pdf
  389. Massironi G, Galluzzi S, Frisoni GB. Drug treatment of REM sleep behavior disorders in dementia with Lewy bodies. Int Psychogeriatr. 2003;15(4): c. 377-383. 
  390. Larsson V, Aarsland D, Ballard C, et al. The effect of memantine on sleep behaviour in dementia with Lewy bodies and Parkinson’s disease dementia. Int. J. Geriat. Psychiatry. 2010; 25: c. 1030-1038.
  391. Sumsuzzman DM, Choi J, Jin Y, Hong Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2021; 127: c. 459-473. 
  392. Bloom HG, Ahmed I, Alessi CA, et al. Evidence-based recommendations for the assessment and management of sleep disorders in older persons. J Am Geriatr Soc. 2009; 57(5): c. 761-789. 
  393. Gitlin LN, Winter L, Dennis MP, et al. Targeting and managing behavioral symptoms in individuals with dementia: a randomized trial of a nonpharmacological intervention. J Am Geriatr Soc. 2010; 58(8): c. 1465-1474.
  394. Mendelson WB. Combining pharmacologic and nonpharmacologic therapies for insomnia. J Clin Psychiatry. 2007; 68 (Suppl.5): c. 19-23. 
  395. Guarnieri B, Musicco M, Caffarra P, et al. Recommendations of the Sleep Study Group of the Italian Dementia Research Association (SINDem) on clinical assessment and management of sleep disorders in individuals with mild cognitive impairment and dementia: a clinical review. Neurol Sci. 2014; 35(9): c. 1329-1348.
  396. Parati G, Lombardi C, Hedner J, et al. European Respiratory Society; EU COST ACTION B26 members. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (COoperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J Hypertens. 2012; 30: c. 633-646. 
  397. Wang ML, Wang C, Tuo M, et al. Cognitive Effects of Treating Obstructive Sleep Apnea: A Meta-Analysis of Randomized Controlled Trials. J Alzheimers Dis. 2020; 75(3): c. 705-715. 
  398. Bombois S, Derambure P, Pasquier F, Monaca c. Sleep disorders in aging and dementia. The journal of nutrition, health & aging. 2010; 14(3): c. 212-217. 
  399. Deschenes CL, McCurry SM. Current treatments for sleep disturbances in individuals with dementia. Current psychiatry reports. 2009; 11(1): c. 20-26. 
  400. Stepnowsky CJ. Jr, Marler MR, Ancoli-Israel S. Determinants of nasal CPAP compliance. Sleep Med. 2002; 3(3): c. 239-247. 
  401. Ayalon L, Ancoli-Israel S, Stepnowsky C, et al. Adherence to continuous positive airway pressure treatment in patients with Alzheimer’s disease and obstructive sleep apnea. Am J Geriatr Psychiatry. 2006; 14(2): c. 176-180. 
  402. Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther. 2018; 10(126): c. 1-10.  https://alzres.biomedcentral.com/track/pdf/10.1186/s13195-018-0457-9
  403. Birks JS. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database of Systematic Reviews 2006; 1: CD005593. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005593/epdf/full
  404. Lopez OL, Becker JT, Saxton J, et al. Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. JAm. Geriatr. Soc. 2005; 53: c. 83-87. 
  405. Donepezil, galantamine, rivastigmine (review) and memantine for the treatment of Alzheimer’s disease (amended). /TA217. NICE technology appraisal guidance/ London: NICE. 2011. https://www.nice.org.uk/guidance/ta217/resources/donepezil-galantamine-rivastigmine-and-memantine-for-the-treatment-of-alzheimers-disease-pdf-82600254699973
  406. Гаврилова С.И., Жариков Г.А., Калын Я.Б., и др. Двойное слепое клиническое исследование эффективности и безопасности применения препарата нейромидин (амиридин) при лечении болезни Альцгеймера с мягкой и умеренной тяжестью деменции. Социальная и клиническая психиатрия. 2003; 1: с. 98-102. 
  407. Kristoferitsch W, et al. Secondary dementia due to Lyme neuroborreliosis //Wiener Klinische Wochenschrift. — 2018. — T. 130. — c. 468-478 
  408. Wang H, Zong Y, Han Y, et al. Compared of efficacy and safety of high-dose donepezil vs standard-dose donepezil among elderly patients with Alzheimer’s disease: a systematic review and meta-analysis. Expert. Opin. Drug Saf. 2022;21(3): c. 407-415. 
  409. Winblad B, Black SE, Homma A, et al. Donepezil treatment in severe Alzheimer’s disease: a pooled analysis of three clinical trials. Curr Med Res Opin 2009; 25: c. 2577-2587.
  410. Sabbagh M, Cummings J. Progressive cholinergic decline in Alzheimer’s disease: consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology. BMC Neurology. 2011; 11:21.  https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-11-21
  411. Wimo A, Winblad B, Shah SN, et al. Impact of donepezil treatment for Alzheimer’s disease on caregiver time. Current Medical Research and Opinion. 2004; 20(8): c. 1221-1225.
  412. Jelic V, Haglund A, Kowalski J, et al. Donepezil treatment of severe Alzheimer’s disease in nursing home settings. A responder analysis. Dementia and Geriatric Cognitive Disorders. 2008; 26(5): c. 458-466. 
  413. Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology. 2001; 57(4): c. 613-620. 
  414. Farlow MR, Salloway S, Tariot PN, et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clinical Therapeutics. 2010; 32(7): c. 1234-1251.
  415. Cummings J, Froelich L, Black SE, et al. Randomized, double-blind, parallel-group, 48-week study for efficacy and safety of a higher-dose rivastigmine patch (15 vs. 10 cm2) in Alzheimer’s disease. Dement Geriatr Cogn Disord 2012; 33: c. 341-353. 
  416. Farlow M.R, Grossberg G, Gauthier S, et al. The ACTION study: methodology of a trial to evaluate safety and efficacy of a higher dose rivastigmine transdermal patch in severe Alzheimer’s disease. Curr Med Res Opin. 2010; 26(10): c. 2441-2447.
  417. Emre M. Switching cholinesterase inhibitors in patients with Alzheimer’s disease. Int. J. Clin. Pract. Suppl. 2002; 127: c. 64-72. 
  418. Gauthier S, Emre M, Farlow MR, et al. Strategies for continued successful treatment of Alzheimer’s disease: switching cholinesterase inhibitors. Curr Med Res Opin 2003; 19: c. 707-714. 
  419. Lopez OL, Becker JT, Saxton J, et al. Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. JAm. Geriatr. Soc. 2005; 53: c. 83-87. 
  420. Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001; 57: c. 481-488. 
  421. Karaman Y, Erdogan F, Koseoglu E, et al. A 12-month study of the efficacy of rivastigmine in patients with advanced moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005; 19: c. 51-56. 
  422. Lopez OL, Becker JT, Wisniewski S, et al Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 2002; 72: c. 310-314. 
  423. Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2012; 366: c. 893-903. 
  424. Doody RS, Geldmacher DS, Gordon B, et al. Open-label, multicenter, phase 3 extension study of the safety and efficacy of donepezil in patients with Alzheimer disease. Arch. Neurol. 2001; 58: c. 427-433. 
  425. Bond M, Rogers G, Peters J, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess. 2012; 16(21): c. 1-470. 
  426. Hansen RA, Gartlehner G, Webb AP, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clinical Interventions in Aging. 2008; 3(2): c. 211-225. 
  427. Kim DH, Brown RT, Ding EL, et al. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011; 59: c. 1019-1031.
  428. Peskind ER, Potkin SG, Pomara N, et al Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006; 14(8): c. 704-1543.
  429. Shi X, Lin X, Hu R, et al. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors. American Journal of Alzheimer’s Disease & Other Dementias. 2016; 31(5): c. 405-412. 
  430. Jones RW, Bayer A, Inglis F, et al. Safety and tolerability of once-daily versus twice-daily memantine: a randomised, double-blind study in moderate to severe Alzheimer’s disease. Int J Geriatr Psychiatry. 2007; 22(3): c. 258-262. 
  431. Parsons C, Lim WY, Loy C, McGuinness B, Passmore P, et al. Withdrawal or continuation of cholinesterase inhibitors or memantine or both, in people with dementia. Cochrane Database Syst Rev. 2021; 2(2): CD009081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094886/
  432. Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: A systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014; 18(5): pyu115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376554/pdf/pyu115.pdf.
  433. Parsons CG, Danysz W, Dekundy A, Pulte I. Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer’s Disease. Neurotox Res. 2013; 24: c. 358-369. 
  434. Tsoi KF, Chan JY.C, Leung NW.Y, et al. Combination Therapy Showed Limited Superiority Over Monotherapy for Alzheimer Disease: A Meta-analysis of 14 Randomized Trials. Journal of the American Medical Directors Association. 2016; 17(9):863.e1–e8. 
  435. Schmidt R, Hofer E, Bouwman FH, et al. EFNS-ENS/EAN Guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. Eur. J. Neurol. 2015; 22: c. 889-898. 
  436. Schmidtke K, Holthoff V, Kressig RW, Molinuevo JL. Combination of Memantine and cholinesterase inhibitors in the treatment of AD. Neurology News. 2011; 1: c. 1-8. 
  437. Gillette-Guyonnet S, Andrieu S, Nourhashemi F, et al. Long-term progression of Alzheimer’s disease in patients under antidementia drugs. Alzheimers Dement. 2011; 7: c. 579-592. 
  438. Chen R, Chan PT, Chu H, et al. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS One. 2017; 12(8): e0183586. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565113/pdf/pone.0183586.pdf
  439. Guo J, Wang Z, Liu R, et al. Memantine, Donepezil, or Combination Therapy-What is the best therapy for Alzheimer’s Disease? A Network Meta-Analysis. Brain Behav. 2020;10(11):e01831. https://onlinelibrary.wiley.com/doi/10.1002/brb3.1831
  440. Ткачева О.Н., Незнанов Н.Г., Рунихина Н.К., Мхитарян Э.А., Дорофейкова М.В., Залуцкая Н.М. Сравнительный анализ эффективности применения монотерапии донепезилом и комбинированной терапии донепезилом и акатинолом мемантином у больных с Болезнью Альцгеймера на стадии легкой деменции/ Актуальные вопросы фармакотерапии и психотерапии психических расстройств. 2022. стр.67 
  441. Alvarez XA, Cacabelos R, Sampedro C, et al. Combination treatment in Alzheimer’s disease: results of a randomized, controlled trial with Cerebrolysin and Donepezil. Current Alzheimer Research. 2011; 8: c. 583-591. 
  442. Gauthier S, Proaño JV, Jia J, et al. Cerebrolysin in mild-to-moderate Alzheimer’s disease: a meta-analysis of randomized controlled clinical trials. Dement Geriatr Cogn Disord. 2015; 39(5-6): c. 332-347. 
  443. Гаврилова С.И. и соавт. ApoE генотип и эффективность нейротрофической и холинергической терапии при болезни Альцгеймера. Журнал Неврологии и Психиатрии. 2005; 4: с. 27-34. 
  444. Savaskan E, Mueller H, Hoerr R, et al. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: meta-analysis of randomized controlled trials. Int Psychogeriatr. 2018; 30(3): c. 285-293. 
  445. Weinmann S, Roll S, Schwarzbach C, et al Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatrics. 2010; 10:14.  https://bmcgeriatr.biomedcentral.com/articles/10.1186/1471-2318-10-14
  446. Tana M.-S, Yua J.-T, Tanb C.-C, et al. Efficacy and Adverse Effects of Ginkgo Biloba for Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 2015; 43: c. 589-603. 
  447. Hashiguchi M, Ohta Y, Shimizu M, et al. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. Journal of Pharmaceutical Health Care and Sciences. 2015; 1:14.  https://jphcs.biomedcentral.com/articles/10.1186/s40780-015-0014-7
  448. Yang G, Wang Y, Sun J, et al. Ginkgo Biloba for Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicinal Chemistry. 2016; 16(5): c. 520-528. 
  449. Xie L, Zhu Q, Lu J. Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells. 2022;11(3):479.  https://www.mdpi.com/2073-4409/11/3/479/htm
  450. Liao Z, Cheng L, Li X, et al. Meta-analysis of Ginkgo biloba Preparation for the Treatment of Alzheimer’s Disease. Clin Neuropharmacol. 2020;43(4): c. 93-99. 
  451. Moreno DJ.M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 2003;25(1): c. 178-193. 
  452. Traini E, Carotenuto A, Fasanaro AM, Amenta F. Volume Analysis of Brain Cognitive Areas in Alzheimer’s Disease: Interim 3-Year Results from the ASCOMALVA Trial. J Alzheimers Dis. 2020; 76(1): c. 317-329. 
  453. Kang M, Lee DB, Kwon S, et al. Effectiveness of Nootropics in Combination with Cholinesterase Inhibitors on Cognitive Function in Mild-to-Moderate Dementia: A Study Using Real-World Data. J. Clin. Med. 2022; 11(16):4661. https://www-mdpi-com.translate.goog/2077-0383/11/16/4661/pdf?version=1660113663&_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=op,sc
  454. Gorelick PB, Scuteri A, Black SE. Vascular Contributions to Cognitive Impairment and Dementia. A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2011; 42: c. 2672-2713.
  455. Hanon O, Pequignot R, Seux ML, et al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens. 2006; 24(10): c. 2101-2107.
  456. Rockwood K, Ebly E, Hachinski V, Hogan D. Presence and treatment of vascular risk factors in patients with vascular cognitive impairment. Arch Neurol. 1997; 54 (1): c. 33-39. 
  457. Douiri A, McKevitt C, Emmett ES, et al. Long-term effects of secondary prevention on cognitive function in stroke patients. Circulation. 2013; 128(12): c. 1341-1348.
  458. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009; 8(11): c. 1006-1018.
  459. Jin BR, Liu HY. Comparative efficacy and safety of cognitive enhancers for treating vascular cognitive impairment: systematic review and Bayesian network meta-analysis. Neural Regen Res. 2019; 14(5): c. 805-816. 
  460. Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007; 6(9): c. 782-792. 
  461. Baskys A, Hou AC. Vascular dementia: pharmacological treatment approaches and perspectives. Clin. Interv. Aging. 2007; 2(3): c. 327-335. 
  462. Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias Clin. Interv. Aging. 2009; 4: c. 367-377. 
  463. Shi X, Ren G, Cui Y, Xu Z. Comparative Efficacy and Acceptability of Cholinesterase Inhibitors and Memantine Based on Dosage in Patients with Vascular Cognitive Impairment: A Network Meta-analysis. Curr Alzheimer Res. 2022;19(2): c. 133-145. 
  464. Baor KJ, Boettger MK, Seidler N.et al Influence of galantamine on vasomotor reactivity in Alzheimer’s disease and vascular dementia due to cerebral microangiopathy. Stroke. 2007; 38: c. 3186-3192.
  465. Kim JO, Lee SJ, Pyo JS. Effect of acetylcholinesterase inhibitors on post-stroke cognitive impairment and vascular dementia: A meta-analysis. PLoS One. 2020;15(2): e0227820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006920/pdf/pone.0227820.pdf
  466. Xi Y, Wang M, Zhang W, et al. Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol. Learn. Mem. 2014; 109: c. 7-19. 
  467. Battle CE, Abdul-Rahim AH, Shenkin SD, Hewitt J, Quinn TJ. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: a network meta-analysis. Cochrane Database Syst Rev. 2021; 2(2): CD013306. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013306.pub2/epdf/full/en
  468. Jiang L, Su L, Cui H, et al. Ginkgo biloba extract for dementia: a systematic review. Shanghai Arch Psychiatry. 2013; 25(1): c. 10-21. 
  469. Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761® in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging. 2014; 9: c. 2065-2077.
  470. Zhang HF, Huang LB, Zhong YB, et al. An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Front Aging Neurosci. 2016; 8:276.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138224/pdf/fnagi-08-00276.pdf
  471. McKeage K, Lyseng-Williamson KA. Ginkgo biloba extract EGb 761® in the symptomatic treatment of mild-to-moderate dementia: a profile of its use. Drugs Ther Perspect. 2018; 34(8): c. 358-366. 
  472. Fioravanti M, Flicker L. Nicergoline for dementia and other age associated forms of cognitive impairment. Cochrane Database of Systematic Reviews. 2001; 4: CD003159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025776/pdf/CD003159.pdf
  473. Herrmann WM, Stephan K, Gaede K, et al. A multicenter randomized double-blind study on the efficacy and safety of nicergoline in patients with multi-infarct dementia. Dement Geriatr Cogn Disord. 1997; 8: c. 9-17. 
  474. Saletu B, Paulus E, Linzmeyer L, et al. Nicergoline in senile dementia of Alzheimer type and multi‐infarct dementia: a double‐blind, placebo‐controlled, clinical and EEG/ERP mapping study. Psychopharmacology 1995; 117(4): c. 385-395. 
  475. Fioravanti M, Nakashima T, Xu J, Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline. BMJ Open. 2014; 4(7): e005090. https://bmjopen.bmj.com/content/4/7/e005090.long
  476. Lu D, Song H, Hao Z, Wu T, McCleery J. Naftidrofuryl for dementia. Cochrane Database Syst Rev. 2011;(12):CD002955. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD002955.pub4/full
  477. Möller HJ, Hartmann A, Kessler C, et al. Naftidrofuryl in the treatment of vascular dementia. Eur Arch Psychiatry Clin Neurosci. 2001; 251(6): c. 247-254. 
  478. Emeriau JP, Lehert P, Mosnier M. Efficacy of naftidrofuryl in patients with vascular or mixed dementia: results of a multicenter, double-blind trial. Clin Ther. 2000; 22(7): c. 834-844. 
  479. Guekht A, Skoog I, Edmundson S, et al. ARTEMIDA Trial (A Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A Randomized Controlled Trial to Assess the Efficacy of Actovegin in Poststroke Cognitive Impairment. Stroke. 2017; 48(5): c. 1262-1270.
  480. Cui S, Chen N, Yang M, et al. Cerebrolysin for vascular dementia. Cochrane Database of Systematic Reviews 2019; 11: CD008900. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008900.pub3/full
  481. Nappi G, Bono G, Merlo P, et al. Long-term idebenone treatment of vascular and degenerative brain disorders of the elderly. Arch Gerontol Geriatr. 1992; 15(3): c. 261-269. 
  482. Bergamasco B, Villardita C, Coppi R. Idebenone in the treatment of multi-infarct dementia: a randomised, double-blind, placebo controlled multicentre trial. Arch Gerontol Geriatr. 1992; 15(3): c. 271-278. 
  483. Marigliano V, Abate G, Barbagallo G, et al. Randomized, double-blind, placebo controlled, multicentre study of idebenone in patients suffering from multi-infarct dementia. Arch Gerontol Geriatr 1992; 15(3): c. 239-248. 
  484. Lingetti M, Porfido FA, Ciarimboli M, et al. Evaluation of the clinical efficacy of idebenone in patients affected by chronic cerebrovascular disorders. Arch Gerontol Geriatr 1992; 15(3): c. 225-237. 
  485. Cotroneo AM, Castagna A, Putignano S, et al. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging. 2013; 8: c. 131-137. 
  486. Alvarez-Sabín J, Ortega G, Jacas C, et al. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis. 2013; 35(2): c. 146-154. 
  487. Cohen RA, Browndyke JN, Moser DJ, et al. Long-term citicoline (cytidine diphosphate choline) use in patients with vascular dementia: neuroimaging and neuropsychological outcomes. Cerebrovasc Dis. 2003; 16(3): c. 199-204. 
  488. Мазин П.В., Шешунов И.В., Мазина Н.К. Метааналитическая оценка клинической эффективности цитофлавина при неврологических заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017; 117(3): с. 28-39. 
  489. Журавлева М.В., Городецкая Г.И., Резникова Т.С., Васюкова Н.С., Архипов В.В., Сереброва С.Ю. Метааналитическая оценка клинической эффективности комплексного метаболического нейропротектора у больных с хронической ишемией головного мозга. Антибиотики и Химиотерапия. 2021; 66(9-10): с. 39-53. 
  490. Федин А.И., Захаров В.В., Танашян М.М. с соавт. Результаты международного многоцентрового рандомизированного двойного слепого плацебо-контролируемого исследования оценки эффективности и безопасности последовательной терапии пациентов с хронической ишемией мозга препаратами Мексидол и Мексидол ФОРТЕ 250 (исследование МЕМО). Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 11: с. 7-16. 
  491. Белова А.Н., Богданов Э.И., Вознюк И.А., и др. Терапия умеренных когнитивных расстройств в раннем восстановительном периоде ишемического инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 121(5): с. 33-39. 
  492. Sha MC, Callahan CM. The efficacy of pentoxifylline in the treatment of vascular dementia: a systematic review. Alzheimer Dis Assoc Disord. 2003; 17(1): c. 46-54. 
  493. Szatmari SZ, Whitehouse PJ. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;(1): CD003119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406981/pdf/CD003119.pdf
  494. Flicker L, Grimley Evans G. Piracetam for dementia or cognitive impairment. Cochrane Database Syst Rev. 2001;(2):CD001011. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001011/epdf/full/en
  495. López-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002;(3):CD000147. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD000147/full#0
  496. Custodio N, Montesinos R, Lira D, et al. Mixed dementia: A review of the evidence. Dement. Neuropsychol. 2017; 11(4): c. 364-370. 
  497. Burns A, O’Brien J. Clinical practice with anti-dementia drugs: a consensus statement from British Association for Psychopharmacology. J. Psychopharmacol. 2006; 20(6): c. 732-755. 
  498. Zekry D, Gold G. Management of mixed dementia. Drugs Aging. 2010; 27(9): c. 715-728. 
  499. Amenta F, Carotenuto A, Fasanaro AM, et al. The ASCOMALVA (Association between the Cholinesterase Inhibitor Donepezil and the Cholinergic Precursor Choline Alphoscerate in Alzheimer’s Disease) Trial: interim results after two years of treatment. J Alzheimers Dis. 2014; 42(Suppl. 3): c. S281–S288.
  500. Ikeda M, Tanabe H, Horino T, et al. Care for patients with Pick’s disease — by using their preserved procedural memory. Seishin Shinkeigaku Zasshi. 1995; 97: c. 179-192. 
  501. O’Connor CM, Clemson L, da Silva TB.L, et al. Enhancement of carer skills and patient function in the non-pharmacological management of frontotemporal dementia (FTD). Dement Neuropsychol. 2013; 7: c. 143-150. 
  502. Tanabe H, Ikeda M, Komori K. Behavioral symptomatology and care of patients with frontotemporal lobe degeneration — based on the aspects of the phylogenetic and ontogenetic processes. Dement Geriatr Cogn Disord. 1999; 10(Suppl 1): c. 50-54. 
  503. Robinson KM. Rehabilitation applications in caring for patients with Pick’s disease and frontotemporal dementias. Neurology. 2001; 56: c. S56–S58. 
  504. Shinagawa S, Nakajima S, Plitman E, et al. Non-Pharmacological Management for Patients with Frontotemporal Dementia: A Systematic Review. Journal of Alzheimer’s Disease. 2015; 45(1): c. 283-293. 
  505. Nardell M, Tampi RR. Pharmacological treatments for frontotemporal dementias: a systematic review of randomized controlled trials. Am J Alzheimers Dis Other Demen. 2014; 29(2): c. 123-132. 
  506. Moretti R, Torre P, Antonello R.M, et al. Frontotemporal Dementia: Paroxetine as a Possible Treatment of Behavior Symptoms. Eur Neurol 2003; 49: c. 13-19. 
  507. Deakin JB, Rahman S, Nestor PJ, et al. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology 2004; 172: c. 400-408. 
  508. Swartz JR, Miller BL, Lesser IM, Darby AL. Frontotemporal Dementia: Treatment Response to Serotonin Selective Reuptake Inhibitors. J Clin Psychiatry 1997; 58(5): c. 212-217. 
  509. Hughes LE, Rittman T, Regenthal R, et al. Improving response inhibition systems in frontotemporal dementia with citalopram. Brain. 2015; 138(Pt 7): c. 1961-1975.
  510. Meyer S, Mueller K, Gruenewald C, et al. Citalopram Improves Obsessive-Compulsive Crossword Puzzling in Frontotemporal Dementia. Case Rep Neurol. 2019; 11(1): c. 94-105. 
  511. Prodan CI, Monnot M, Ross ED. Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J Neurol Neurosurg Psychiatry. 2009; 80: c. 1416-1417.
  512. Boxer AL, Lipton AM, Womack K, et al. An open-label study of memantine treatment in 3 subtypes of frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2009; 23(3): c. 211-217. 
  513. Boxer AL, Knopman DS, Kaufer DI, et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2013; 12(2): c. 149-156. 
  514. Li P, Quan W, Zhou YY, et al. Efficacy of memantine on neuropsychiatric symptoms associated with the severity of behavioral variant frontotemporal dementia: A six-month, open-label, self-controlled clinical trial. Exp Ther Med. 2016; 12(1): c. 492-498. 
  515. Chow TW, Fam D, Graff-Guerrero A, et al. Fluorodeoxyglucose positron emission tomography in semantic dementia after 6 months of memantine: an open-label pilot study. Int J Geriatr Psychiatry. 2013; 28(3): c. 319-325. 
  516. Kishi T, Matsunaga S, Iwata N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr Dis Treat. 2015; 11: c. 2883-2885.
  517. Kertesz A, Morlog D, Light M, et al. Galantamine in Frontotemporal Dementia and Primary Progressive Aphasia. Dement Geriatr Cogn Disord 2008; 25: c. 178-185. 
  518. Moretti R, Torre P, Antonello RM, et al. Rivastigmine in Frontotemporal Dementia. Drugs Aging. 2004; 21:931-937. 
  519. Litvan I, Phipps M, Pharr VL, et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 2001; 57(3): c. 467-473. 
  520. Kimura T, Takamatsu J. Pilot study of pharmacological treatment for frontotemporal dementia: Risk of donepezil treatment for behavioral and psychological symptoms. Geriatrics & Gerontology International. 2013; 13: c. 506-507. 
  521. Mendez MF, Shapira JS, McMurtray A, Licht E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry. 2007; 15(1): c. 84-87. 
  522. Arciniegas DB, Anderson CA. Donepezil-Induced Confusional State in a Patient With Autopsy-Proven Behavioral-Variant Frontotemporal Dementia. The Journal of Neuropsychiatry and Clinical Neurosciences. 2013; 25(3): E25–E26. 
  523. Yeh TC, Tzeng NS, Li JC, et al. Mortality Risk of Atypical Antipsychotics for Behavioral and Psychological Symptoms of Dementia: A Meta-Analysis, Meta-Regression, and Trial Sequential Analysis of Randomized Controlled Trials. J Clin Psychopharmacol. 2019; 39(5): c. 472-478. 
  524. Curtis RC, Resch DS. Case of pick’s central lobar atrophy with apparent stabilization of cognitive decline after treatment with risperidone. J Clin Psychopharmacol. 2000; 20(3): c. 384-385. 
  525. Dorsey ER, Rabbani A, Gallagher SA, et al. Impact of FDA black box advisory on antipsychotic medication use. Arch Intern Med. 2010; 170: c. 96-103. 
  526. Fellgiebel A, Muller MJ, Hiemke C, et al. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry. 2007; 8: c. 123-126. 
  527. Czarnecki K, Kumar N, Josephs KA. Parkinsonism and tardive antecollis in frontotemporal dementia — increased sensitivity to newer antipsychotics? Eur J Neurol. 2008; 15: c. 199-201. 
  528. Yu C.-E, Bird TD, Bekris LM, et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol. 2010; 67: c. 161-170. 
  529. Di Fabio R, Tessa A, Simons EJ, et al. Familial frontotemporal dementia with parkinsonism associated with the progranulin c.C1021T (p. Q341X) mutation. Parkinsonism Relat Disord. 2010; 16: c. 484-485. 
  530. Stinton C, et al. Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. American Journal of Psychiatry. 2015; 172(8): c. 731-742. 
  531. Wang H, Yu J, Tang S, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. Journal of Neurology, Neurosurgery & Psychiatry. 2015; 86: c. 135-143. 
  532. Meng YH, Wang PP, Song YX, Wang JH. Cholinesterase inhibitors and memantine for Parkinson’s disease dementia and Lewy body dementia: A meta-analysis. Exp Ther Med. 2019; 17(3): c. 1611-1624.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.