The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Vikhreva O.V.

Mental Health Research Center

Rakhmanova V.I.

Mental Health Research Center

Uranova N.A.

Mental Health Research Center

Microglia-neuron interactions in the caudate nucleus in different course of schizophrenia

Authors:

Vikhreva O.V., Rakhmanova V.I., Uranova N.A.

More about the authors

Read: 1217 times


To cite this article:

Vikhreva OV, Rakhmanova VI, Uranova NA. Microglia-neuron interactions in the caudate nucleus in different course of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7):154‑164. (In Russ.)
https://doi.org/10.17116/jnevro2024124071154

References:

  1. Cserép C, Pósfai B, Dénes Á. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron. 2021;109(2):222-240.  https://doi.org/10.1016/j.neuron.2020.11.007
  2. Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8(11):e1000527. https://doi.org/10.1371/journal.pbio.1000527
  3. Badimon A, Strasburger HJ, Ayata P, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586(7829):417-423.  https://doi.org/10.1038/s41586-020-2777-8
  4. Monji A, Kato T, Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63(3):257-265.  https://doi.org/10.1111/j.1440-1819.2009.01945.x
  5. Vikhreva OV, Uranova NA. Microglial reactivity in the prefrontal cortex in different types of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(12):77-83. (In Russ.). https://doi.org/10.17116/jnevro202112112177
  6. Uranova NA, Vikhreva OV, Rakhmanova VI. Microglia-neuron interactions in prefrontal gray matter in schizophrenia: a postmortem ultrastructural morphometric study. Eur Arch Psychiatry Clin Neurosci. 2023;273(8):1633-1648. https://doi.org/10.1007/s00406-023-01621-x
  7. Haber SN, Behrens TEJ. The neural network underlying incentive based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron. 2014;83:1019-1039. https://doi.org/10.1016/j.neuron.2014.08.031
  8. Graff-Radford J, Williams L, Jones DT, Benarroch EE. Caudate nucleus as a component of networks controlling behavior. Neurology. 2017;89(21):2192-2197. https://doi.org/10.1212/WNL.0000000000004680
  9. Nielsen MØ, Rostrup E, Broberg BV, et al. Negative symptoms and reward disturbances in schizophrenia before and after antipsychotic monotherapy. Clin. EEG Neurosci. 2018;49:36-45.  https://doi.org/10.1177/1550059417744120
  10. Falke E, Han LY, Arnold SE. Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res. 2000;93(2):103-110.  https://doi.org/10.1016/s0165-1781(00)00104-9
  11. Kreczmanski P, Heinsen H, Mantua V, et al. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain. 2007;130(Pt 3):678-692.  https://doi.org/10.1093/brain/awl386
  12. Wada A, Kunii Y, Ikemoto K et al. Increased ratio of calcineurin immunoreactive neurons in the caudate nucleus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):8-14.  https://doi.org/10.1016/j.pnpbp.2012.01.005
  13. Adorjan I, Sun B, Feher V, et al. Evidence for Decreased Density of Calretinin-Immunopositive Neurons in the Caudate Nucleus in Patients With Schizophrenia. Front Neuroanat. 2020;13,14:581685. https://doi.org/10.3389/fnana.2020.581685
  14. Holt DJ, Bachus SE, Hyde TM, et al. Reduced density of cholinergic interneurons in the ventral striatum in schizophrenia: an in situ hybridization study. Biol Psychiatry. 2005;58(5):408-416.  https://doi.org/10.1016/j.biopsych.2005.04.007
  15. Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Ultrastructural pathology of oligodendrocytes in the white matter in continuous paranoid paranoid schizophrenia: a role for microglia. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(9):76-81. (In Russ.). https://doi.org/10.17116/jnevro20171179176-81
  16. Patel S, Sharma D, Kalia K, Tiwari V. Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev. 2017;83:589-603.  https://doi.org/10.1016/j.neubiorev.2017.08.025
  17. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973-982.  https://doi.org/10.1093/schbul/sby024
  18. De Picker LJ, Victoriano GM, Richards R, et al. Immune environment of the brain in schizophrenia and during the psychotic episode: A human post-mortem study. Brain Behav Immun. 2021;97:319-327.  https://doi.org/10.1016/j.bbi.2021.07.017
  19. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177-183.  https://doi.org/10.1038/nature16549
  20. Jenkins AK, Lewis DA, Volk DW. Altered expression of microglial markers of phagocytosis in schizophrenia. Schizophr Res. 2023;251:22-29.  https://doi.org/10.1016/j.schres.2022.12.005
  21. Uranova NA, Vikhreva OV, Rakhmanova VI. Abnormal microglial reactivity in gray matter of the prefrontal cortex in schizophrenia. Asian J Psychiatr. 2021;63:102752. https://doi.org/10.1016/j.ajp.2021.102752
  22. Kochunov P, Glahn DC, Rowland LM, et al. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol Psychiatry. 2013;73(5):482-491.  https://doi.org/10.1016/j.biopsych.2012.10.002
  23. Kirkpatrick B, Kennedy BK. Accelerated aging in schizophrenia and related disorders: future research. Schizophr Res. 2018;196:4-8.  https://doi.org/10.1016/j.schres.2017.06.034
  24. Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatr. 2017;72:60-72.  https://doi.org/10.1016/j.pnpbp.2016.09.002
  25. Ribak CE, Shapiro LA, Perez ZD, et al. Microglia-associated granule cell death in the normal adult dentate gyrus. Brain Struct Funct. 2009;214(1):25-35.  https://doi.org/10.1007/s00429-009-0231-7
  26. Ebdrup BH, Norbak H, Borgwardt S, et al. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem. 2013;20:438.  https://doi.org/10.2174/0929867311320030015
  27. Haijma SV, Van Haren N, Cahn W, et al. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39:1129-1138. https://doi.org/10.1093/schbul/sbs118
  28. Kung L, Roberts RC. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse. 1999;31(1):67-75. 
  29. Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion. 2021;56:91-101.  https://doi.org/10.1016/j.mito.2020.11.009
  30. Roberts RC, Roche JK, Conley RR. Differential synaptic changes in the striatum of subjects with undifferentiated versus paranoid schizophrenia. Synapse. 2008;62(8):616-627.  https://doi.org/10.1002/syn.20534
  31. Glezer II, Sukhorukova LI. Structural features of neuroglia in schizophrenia of the periodic and uninterruped types (histological and electron microscopic study). S.S. Korsakov Journal of Neurology and Psychiatry. 1966;66(10):1529-1537. (In Russ.).
  32. Sukhorukova LI. Changes in neuroglia in continuous schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 1966;66(9):1408-1416. (In Russ.).
  33. Somerville SM, Conley RR, Roberts RC. Striatal mitochondria in subjects with chronic undifferentiated vs. chronic paranoid schizophrenia. Synapse. 2012;66(1):29-41.  https://doi.org/10.1002/syn.20981
  34. Da Silva T, Wu A, Laksono I, et al. Mitochondrial function in individuals at clinical high risk for psychosis. Sci Rep. 2018;8:6216. https://doi.org/10.1038/s41598-018-24355-6
  35. Yuksel C, Chen X, Chouinard VA, et al. Abnormal Brain Bioenergetics in First-Episode Psychosis. Schizophr Bull Open. 2021;2(1):sgaa073. https://doi.org/10.1093/schizbullopen/sgaa073
  36. Reis-de-Oliveira G, Zuccoli GS, Fioramonte M, et al. Digging deeper in the proteome of different regions from schizophrenia brains. J Proteomics. 2020;223:103814. https://doi.org/10.1016/j.jprot.2020.103814
  37. Prabakaran S, Swatton JE, Ryan MM, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry. 2004;9(7):684-697.  https://doi.org/10.1038/sj.mp.4001511
  38. Suarez-Mendez S, García-de la Cruz DD, Tovilla-Zarate C, et al. Diverse roles of mtDNA in schizophrenia: implications in its pathophysiology and as biomarker for cognitive impairment. Prog Biophys Mol Biol. 2020;155:36-41.  https://doi.org/10.1016/j.pbiomolbio.2020.04.004
  39. Comer AL, Carrier M, Tremblay MÈ, et al. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 2020;14:274.  https://doi.org/10.3389/fncel.2020.00274
  40. Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75:324-331.  https://doi.org/10.1016/j.biopsych.2013.09.037
  41. Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients. 2019;11(6):1251. https://doi.org/10.3390/nu11061251
  42. Konjevod M, Perkovic NM, Sáiz J, et al. Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J Pharm Biomed Anal. 2021;194:113681. https://doi.org/10.1016/j.jpba.2020.113681
  43. Tian L, Hui CW, Bisht K, et al. Microglia under psychosocial stressors along the aging trajectory: consequences on neuronal circuits, behavior, and brain diseases. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt A):27-39.  https://doi.org/10.1016/j.pnpbp.2017.01.007

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.