The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Volchegorskii I.A.

South Ural State Medical University

Rassokhina L.M.

South Ural State Medical University

Miroshnichenko I.U.

South Ural State Medical University

Dopaminergic potential of domestic 3-hydroxypyridine and succinic acid derivatives and prospects for their therapeutic «retargeting»

Authors:

Volchegorskii I.A., Rassokhina L.M., Miroshnichenko I.U.

More about the authors

Read: 1727 times


To cite this article:

Volchegorskii IA, Rassokhina LM, Miroshnichenko IU. Dopaminergic potential of domestic 3-hydroxypyridine and succinic acid derivatives and prospects for their therapeutic «retargeting». S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(8):21‑29. (In Russ.)
https://doi.org/10.17116/jnevro202312308121

References:

  1. Pillinger T, McCutcheon RA, Vano L, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(1):64-77.  https://doi.org/10.1016/S2215-0366(19)30416-X
  2. Bahler L, Verberne HJ, Brakema E, et al. Bromocriptine and insulin sensitivity in lean and obese subjects. Endocrine Connections. 2016;5(6):44-52.  https://doi.org/10.1530/EC-16-0051
  3. Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789-794.  https://doi.org/10.2337/dc11-0064
  4. Lavergne F, Jay TM. A new strategy for antidepressant prescription. Frontiers in Neuroscience. 2010;4:192.  https://doi.org/10.3389/fnins.2010.00192
  5. Lyra E, Silva NM, Lam MP, et al. Insulin Resistance as a Shared Pathogenic Mechanism Between Depression and Type 2 Diabetes. Frontiers in Psychiatry. 2019;10:57.  https://doi.org/10.3389/fpsyt.2019.00057
  6. Zhao F, Cheng Z, Piao J, et al. Dopamine Receptors: It Possible to Become Is a Therapeutic Target for Depression? Frontiers in Pharmacology. 2022;13:947785. https://doi.org/10.3389/fphar.2022.947785
  7. Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. International Journal of Molecular Sciences. 2022;23(11):6144. https://doi.org/10.3390/ijms23116144
  8. Nguyen TT, Ta QTH, Nguyen TKO, et al. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. International Journal of Molecular Sciences. 2020;21(9):3165. https://doi.org/10.3390/ijms21093165
  9. Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. https://doi.org/10.1016/j.metabol.2021.154766
  10. Rudrapal M, Khairnar SJ, Jadhav AG. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In: Badria F.A., ed. Drug Repurposing. Hypothesis, Molecular Aspects and Therapeutic Applications. S.l.]: IntechOpen; 2020;1-20.  https://doi.org/10.5772/intechopen.93193
  11. Grall-Bronnec M, Victorri-Vigneau C, Donnio Y, et al. Dopamine Agonists and Impulse Control Disorders: A Complex Association. Drug Safety. 2018;41(1):19-75.  https://doi.org/10.1007/s40264-017-0590-6
  12. Beaulieu J-M, Gainetdinov RR. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacological Reviews. 2011;63(1):182-217.  https://doi.org/10.1124/pr.110.002642
  13. Thaakur S, Himabindhu G. Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats. Journal of Neural Transmission (Vienna). 2009;116(7):807-814.  https://doi.org/10.1007/s00702-009-0232-y
  14. Tamaddonfard E. Turmeric active substance, curcumin, enhanced apomorphine-induced yawning in rats. Avicenna Journal of Phytomedicine. 2013;3(3):231-237.  https://doi.org/10.22038/AJP.2013.74
  15. Erbaş O, Akseki HS, Eliküçük B, Taşkıran D. Antipsychotic-like effect of trimetazidine in a rodent model. Scientific World Journal. 2013;2013:686304. Accessed January 31, 2023. https://doi.org/10.1155/2013/686304
  16. Dy AMB, Limjoco LLG, Jamora RDG. Trimetazidine-Induced Parkinsonism: A Systematic Review. Frontiers in Neurology. 2020;11:44. Accessed January 31, 2023. https://doi.org/10.3389/fneur.2020.00044
  17. Voronina TA, Ivanova EA. Combined administration of mexidol with known medicines. Zhurnal Nevrologii i Psikhiatrii im. C.C. Korsakova. 2019;119(4):115-124. (In Russ.). https://doi.org/10.17116/jnevro2019119041115
  18. Katunina EA. Estimating the potential of antioxidant therapy for patients with Parkinson’s disease diagnosis. Eksperimental’naya i Klinicheskaya Farmakologiya. 2005;68(5):16-18. (In Russ.).
  19. Volchegorskii IA, Miroshnichenko IYu, Rassokhina LM, et al. The effect of 3-hydroxypyridine and succinic acid derivatives on stereotypic behavior and catalepsy in mice. Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova. 2017;103(4):406-416. (In Russ.).
  20. Volchegorskii IA, Miroshnichenko IYu, Rassokhina LM, et al. The effect of 3-oxypyridine and succinic acid derivatives on obsessive-compulsive activity of mice in marble-burying test. Eksperimental’naya i Klinicheskaya Farmakologiya. 2014;77(10):10-14. (In Russ.).
  21. Volchegorskii IA, Miroshnichenko IYu, Rassokhina LM. Cute antidepressive effect of 3-oxypiridine and succinic acid derivatives in experimental study on rats. Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova. 2017;103(7):755-767. (In Russ.).
  22. Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews. 2007;56(2):283-321.  https://doi.org/10.1016/j.brainresrev.2007.07.014
  23. Volchegorskii IA, Rassokhina LM, Miroshnichenko IY, et al. Effect of pro- and antioxidants on insulin sensitivity and glucose tolerance. Bulletin of Experimental Biology and Medicine. 2011;150(9):327-332. (In Russ.).
  24. Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson’s Disease. Antioxidants (Basel). 2020;9(7):597.  https://doi.org/10.3390/antiox9070597
  25. Leyane TS, Jere SW, Houreld NN. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. International Journal of Molecular sciences. 2022;23(13):7273. https://doi.org/10.3390/ijms23137273
  26. Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry. 2011;69(12):113-125.  https://doi.org/10.1016/j.biopsych.2011.03.028
  27. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Pod red. Mironova A.N. M.: Izdatel’stvo Grif i K; 2012. (In Russ.).
  28. Sies H, Ursini F. Homeostatic control of redox status and health. IUBMB Life. 2022;74(1):24-28.  https://doi.org/10.1002/iub.2519
  29. Chui A, Zhang Q, Dai Q, Shi SH. Oxidative stress regulates progenitor behavior and cortical neurogenesis. Development. 2020;147(5):dev184150. https://doi.org/10.1242/dev.184150
  30. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews. Molecular Cell Biology. 2020;21(7):363-383.  https://doi.org/10.1038/s41580-020-0230-3
  31. Carlsson A, Carlsson ML. A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues in Clinical Neuroscience. 2006;8(1):137-142.  https://doi.org/10.31887/DCNS.2006.8.1/acarlsson
  32. Petzer A, Grobler P, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase by selected phenylalkylcaffeine analogues. Journal of Pharmacy and Pharmacology. 2014;66(5):677-687.  https://doi.org/10.1111/jphp.12193
  33. Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Frontiers in Pharmacology. 2021;12:676239. https://doi.org/10.3389/fphar.2021.676239
  34. Godar SC, Fite PJ, McFarlin KM, Bortolato M. The role of monoamine oxidase A in aggression: Current translational developments and future challenges. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2016;69:90-100.  https://doi.org/10.1016/j.pnpbp.2016.01.001
  35. Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Frontiers in Neuroscience. 2022;15:773404. https://doi.org/10.3389/fnins.2021.773404
  36. Ryu IS, Kim O-H, Kim JS, et al. Effects of β-Phenylethylamine on Psychomotor, Rewarding, and Reinforcing Behaviors and Affective State: The Role of Dopamine D1 Receptors. International Journal of Molecular Sciences. 2021;22(17):9485. https://doi.org/10.3390/ijms22179485
  37. Graves SM, Xie Z, Stout KA, et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience. 2020;23(1):15-20.  https://doi.org/10.1038/s41593-019-0556-3
  38. Sies H. Findings in redox biology: From H2O2 to oxidative stress. The Journal of Biological Chemistry. 2020;295(39):13458-13473. https://doi.org/10.1074/jbc.X120.015651
  39. Tregubova IA, Kosolapov VA, Spasov AA, Anisimova VA. Mnemotropic and anxiolytic activity of mexidol and enoxifol. Vestnik Novykh Meditsinskikh Tekhnologii. Elektronnoe Izdanie. 2015;(4). Accessed February 7, 2023. (In Russ.). https://doi.org/10.12737/14918
  40. Miroshnichenko II, Smirnov LD, Voronin AE, et al. Effect of mexidol on the content of transmitter monoamines and amino acids in rat brain structures. Bulletin of Experimental Biology and Medicine. 1996;121(2):156-159. (In Russ.). https://doi.org/10.1007/BF02446624
  41. Volchegorskii IA, Sinitskii AI, Miroshnichenko IYu, Rassokhina LM. The effect of 3-hydroxypyridine and succinic acid derivatives on hippocampal monoamine oxidase activity in rats with alloxan diabetes. Zhurnal Evolyutsionnoi Biokhimii i Fiziologii. 2020;56(1):13-23. (In Russ.). https://doi.org/10.31857/S0044452919050139
  42. Volchegorskii IA, Sinitskii AI, Miroshnichenko IYu, Rassokhina LM. Effect of 3-oxypyridine derivatives and succinic acid on the activity of monoamine oxidases and the content of monoamines in the hypothalamus of rats with alloxan-induced diabetes. Neirokhimiya. 2020;37(2):161-172. (In Russ.). https://doi.org/10.31857/S1027813320010203
  43. Volchegorskii IA, Sinitskii AI, Miroshnichenko IYu, Rassokhina LM. The effect of 3-hydroxypyridine and succinic acid derivatives on the activity of monoamine oxidases in the brain cortex of rats with alloxan-induced diabetes Neirokhimiya. 2019;36(3):226-238. (In Russ.). https://doi.org/10.1134/S1027813319020134
  44. Volchegorskii IA, Sinitskii AI, Miroshnichenko IY, Rassokhina LM. Effects of 3-hydroxypyridine and succinic acid derivatives on monoamine oxidase activity in vitro. Pharmaceutical Chemistry Journal. 2018;52(1):3-7. (In Russ.). https://doi.org/10.30906/0023-1134-2018-52-1-3-7
  45. Chen S, Tang Y, Gao Y, et al. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Frontiers in Pharmacology. 2022;13:865376. https://doi.org/10.3389/fphar.2022.865376
  46. Ilieva V, Kondeva-Burdina M, Georgieva T. In vitro analysis of the activity of human monoamine oxidase type B (hMAOB), treated with the cyanotoxin anatoxin-a: supposed factor of neurodegenerative diseases. Pharmacia. 2020;67(2):111-114.  https://doi.org/10.3897/pharmacia.67.e50806
  47. Storozheva ZI, Proshin AT, Sherstnev VV, et al. Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and beta-amyloid peptide-(25-35)-induced amnesia. BMC Pharmacology. 2008;8(1):1-13.  https://doi.org/10.1186/1471-2210-8-1
  48. Volchegorskii IA, Rassokhina LM, Miroshnichenko IIu. Cerebroprotective effect of 3-oxypyridine and succinic acid derivatives in experimental diabetes mellitus. Zhurnal Nevrologii i Psikhiatrii im. C.C. Korsakova. 2013;113(6):50-61. (In Russ.).
  49. Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Frontiers in Human Neuroscience. 2017;11:484. Accessed January 31, 2023. https://doi.org/10.3389/fnhum.2017.00484
  50. Kovaleva ES, Prilipko LL, Muranov KO. The effect of antioxidants on the release of 3H-serotonin by rat brain synaptosomes. Byulleten’ Eksperimental’noi Biologii i Meditsiny. 1983;96(10):55-57. (In Russ.).
  51. Sharifi H, Nayebi AM, Farajnia S. The effect of chronic administration of buspirone on 6-hydroxydopamine-induced catalepsy in rats. Advanced Pharmaceutical Bulletin. 2012;2(1):127-131.  https://doi.org/10.5681/apb.2012.019
  52. Voronina TA. Mexidol: the spectrum of pharmacological effects. Zhurnal Nevrologii i Psikhiatrii im. C.C. Korsakova. 2012;112(12):86-90. (In Russ.).
  53. Chen SW, Xin Q, Kong WX, et al. Anxiolytic-like effect of succinic acid in mice. Life Sciences. 2003;73(25):3257-3264. https://doi.org/10.1016/j.lfs.2003.06.017
  54. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience. 2011;34:441-466.  https://doi.org/10.1146/annurev-neuro-061010-113641
  55. Motin VG, Yasnetsov VV, Zabozlaev AA, et al. Electrophysiological study of the mechanism of mexidol action. Eksperimental’naya i Klinicheskaya Farmakologiya. 2012;75(1):3-7. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.