The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Rudenskaya G.E.

Bochkov Research Centre for Medical Genetics

Kuchina A.S.

Bochkov Research Centre for Medical Genetics

Kadnikova V.A.

Bochkov Research Centre for Medical Genetics

Ryzhkova O.P.

Bochkov Research Centre for Medical Genetics

A case of spastic paraplegia with SPG4 and SPG3 associated mutations

Authors:

Rudenskaya G.E., Kuchina A.S., Kadnikova V.A., Ryzhkova O.P.

More about the authors

Read: 1269 times


To cite this article:

Rudenskaya GE, Kuchina AS, Kadnikova VA, Ryzhkova OP. A case of spastic paraplegia with SPG4 and SPG3 associated mutations. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(5):171‑176. (In Russ.)
https://doi.org/10.17116/jnevro2023123051171

References:

  1. Rudenskaya GE, Kadnikova VA, Ryzhkova OP, Polyakov AV. Spastic paraplegias in the era of exome sequencing. Bull Nat Soc Parkinsonism & Movement Disorders. 2022;2:178-183. (In Russ.). https://doi.org/10.24412/2226-079X-2022-12462
  2. Rudenskaya GE, Kadnikova VA, Sidorova OP, et al. Hereditary spastic paraplegia type 4 In Russian patients. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2019;11:11-20. (In Russ.). https://doi.org/10.17116/jnevro201911911111
  3. Rudenskaya GE, Kadnikova VA, Beetz C, et al. Clinical and molecular genetic characteristics of hereditary spastic paraplegia, type 3 (SPG3) Annaly Klinicheskoy i Experimental’noy Nevrologii. 2020;1:44-54. (In Russ.). https://doi.org/10.25692/ACEN.2020.1.5
  4. Masciullo M, Iannaccone E, Bianchi ML, et al. Myotonic dystrophy type 1 and de novo FSHD mutation double trouble: a clinical and muscle MRI study. Neuromuscul Disord. 2013;23(5):427-431.  https://doi.org/10.1016/j.nmd.2013.02.002
  5. Ardissone A, Brugnoni R, Gandioli C, et al. Double-trouble in pediatric neurology: myotonia congenita combined with Charcot-Marie-Tooth disease type 1A. Muscle Nerve. 2014;50(1):145-147.  https://doi.org/10.1002/mus.24205
  6. Scarlato M, Nuara A, Gerevini S, et al. A.new double-trouble phenotype: fascioscapulohumeral muscular dystrophy.ameliorates hereditary spastic paraparesis due to spastin mutation. J Neurol. 2015;62(2):476-478.  https://doi.org/10.1007/s00415-014-7606-2
  7. Frączek A, Potulska-Chromik A, Bednarska-Makaruk M, et al. Spinal muscular atrophy with an overlapping syndrome — «double trouble» or a potentially better outcome? Neurol Neurochir Pol. 2020;54(5):475-477.  https://doi.org/10.5603/PJNNS.a2020.0060
  8. Chelban V, Lynch D, Houlden H, Wood N. Triple trouble: a striking new phenotype or competing genes in a family with hereditary spastic paraplegia. J Neurol. 2016;263(6):1232-1233. https://doi.org/10.1007/s00415-016-8103-6
  9. Rudenskaya GE, Bulakh MV, Milovidova TB, Shchagina OA. Coincidence of hereditary motor and sensory neuropathy type 1A and limb girdle muscular dystrophy type 2A. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2018;118(11):43-47. (In Russ.). https://doi.org/10.17116/jnevro201811811143
  10. Rudenskaya GE, Shumarina AO, Antonets AV, et al. Coincidence of two rare neurologic diseases detected by panel next-generation sequencing. Meditsinskaya Genetika. 2017;16(11):48-51. (In Russ.).
  11. McCorquodale DS, Ozomaro U, Huang J, et al. Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin Genet. 2011;79(6):523-530.  https://doi.org/10.1111/j.1399-0004.2010.01501.x
  12. Rudenskaya GE, Shestopalova EA, Kadnikova VA, Shchagina OA. Atypical spastic paraplegia type 4 due to p.Arg499His mutation in SPAST gene. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2022;122(3):117-120. (In Russ.). https://doi.org/10.17116/jnevro2022122031117
  13. Kadnikova V, Rudenskaya G, Stepanova A, et al. Mutational spectrum of SPAST (SPG4) and ATL1 (SPG3A) genes In Russian patients with hereditary spastic paraplegia. Sci Rep. 2019;9(1):14412. https://doi.org/10.1038/s41598-019-50911-9
  14. Kars ME, Başak AN, Onat OE, et al. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci USA. 2021;118(36):e2026076118. https://doi.org/10.1073/pnas.2026076118
  15. Zhao GH, Liu XM. Clinical features and genotype-phenotype correlation analysis in patients with ATL1 mutations: A literature reanalysis. Transl Neurodegener. 2017;34(8):6-9.  https://doi.org/10.1186/s40035-017-0079-3
  16. D’Amico A, Tessa A, Sabino A, et al. Incomplete penetrance in an SPG3A-linked family with a new mutation in the atlastin gene. Neurology. 2004;62:2138-2139. https://doi.org/10.1212/01.wnl.0000127698.88895.85
  17. Di Fabio R, Tessa A, Marcotulli C, et al. When atlastin meets spastin. Clin Genet. 2014;86(5):504-505.  https://doi.org/10.1111/cge.12331
  18. Varga RE, Schüle R, Fadel H, et al. Do not trust the pedigree: reduced and sex-dependent penetrance at a novel mutation hotspot in ATL1 blurs autosomal dominant inheritance of spastic paraplegia. Hum Mutat. 2013;34:860-863.  https://doi.org/10.1002/humu.22309
  19. Lal D, Neubauer BA, Toliat MR, Altmüller J, et al. Increased probability of co-occurrence of two rare diseases in consanguineous families and resolution of a complex phenotype by next generation sequencing. PLoS One. 2016;11(1):e0146040. eCollection 2016. https://doi.org/10.1371/journal.pone.0146040
  20. Tadic V, Klein C, Hinrichs F, et al. CAPN1 mutations are associated with a syndrome of combined spasticity and ataxia. J Neurol. 2017;264(5):1008-1010. https://doi.org/10.1007/s00415-017-8464-5
  21. Shetty A, Gan-Or Z, Ashtiani S, et al. CAPN1: novel mutations expanding the phenotype of hereditary spastic paraparesis. Eur J Med Genet. 2019;62(12):103605. https://doi.org/10.1016/j.ejmg.2018.12.010
  22. Cui F, Qiao J, Li JY, et al. Genetic mutation analysis of hereditary spastic paraplegia: a retrospective study. Medicine (Baltimore). 2020;5;99(23):e20193. https://doi.org/10.1097/MD.0000000000020193
  23. Salameh JS, Shenoy AM, David WS. Novel SPG3A and SPG4 mutations in two patients with Silver syndrome. J Clin Neuromuscul Dis. 2009;11(1):57-59.  https://doi.org/10.1097/CND.0b013e3181ae3c06
  • Falls in elderly and senile patients. Federation Health Ministry Clinical recommendations. 2020. (In Russ.). https://cr.rosminzdrav.ru/#!/recomend/1030
  • Chronic pain in elderly and senile patients. Russian Federation Health Ministry Clinical recommendations. 2020. (In Russ.). https://cr.rosminzdrav.ru/#!/recomend/1033
  • Clinical recommendations of the Ministry of Health of Russia «Gonarthrosis». 2021. (In Russ.). https://cr.minzdrav.gov.ru/recomend/667_1
  • Clinical recommendations of the Ministry of Health of Russia «Coxarthrosis». 2021. (In Russ.). https://cr.minzdrav.gov.ru/recomend/666_1
  • Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoart Cart. 2008;16 Suppl 3:S14-18.  https://doi.org/10.1016/j.joca.2008.06.008
  • Du Souich P, Garcia A,Verges J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med. 2009;3(8A):1451-1463. https://doi.org/10.1111/j.1582-4934.2009.00826.x
  • de Abajo F, Gil M, Garcia Poza P, et al. Risk of nonfatal acute myocardial infarction associated with non-steroidal antiinflammatory drugs, non-narcotic analgesics and other drugs used in osteoarthritis: a nested case-control study. Pharmacoepidemiol Drug Saf. 2014;23:1128-1138. https://doi.org/10.1002/pds.3617
  • King D, Xiang J. Glucosamine/Chondroitin and Mortality in a US NHANES Cohort. J Am Board Fam Med. 2020;33(6):842-847.  https://doi.org/10.3122/jabfm.2020.06.200110
  • Bell G, Kantor E, Lampe J, et al. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol. 2012;27(8):593-603.  https://doi.org/10.1007/s10654-012-9714-6
  • Morrison L. Reduction of ischemic coronary heart disease by chondroitin sulfate. Angiology. 1971;22(3):165-174.  https://doi.org/10.1177/000331977102200308
  • Morrison L, Enrick N. Coronary Heart Disease: Reduction of Death Rate By Chondroitin Sulfate. Angiology. 1973;24(5):269-287.  https://doi.org/10.1177/000331977302400503
  • Nakazawa K, Murata K. Comparative study of the effects of chondroitin sulfate isomers on atherosclerotic subjects. Clinical Trial. Z Alternsforsch. 1979;34(2):153-159. 
  • Mazzucchelli R, Rodrı´guez-Martı´n S, Garcı´a-Vadillo A, et al. Risk of acute myocardial infarction among new users of chondroitin sulfate: A nested case-control study. PLoS ONE. 2021;16(7):e0253932. https://doi.org/10.1371/journal.pone.0253932
  • Melgar-Lesmes P, Sánchez-Herrero A, Lozano-Juan F, et al. Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thromb. Haemost. 2018;118(7):1329-1339. https://doi.org/10.1055/s-0038-1657753
  • Williams K, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551-561.  https://doi.org/10.1161/01.atv.15.5.551
  • Adhikara I, Yagi K, Mayasari D, et al. Chondroitin Sulfate Nacetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arterioscler Thromb Vasc Biol. 2021 Mar;41(3):1076-1091. https://doi.org/10.1161/ATVBAHA.120.315789
  • Bell J, Rhind S, Di Battista A, et al. Biomarkers of glycocalyx injury are associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage: a case series supporting a new hypothesis. Neurocrit Care. 2016;26(3):339-347.  https://doi.org/10.1007/s12028-016-0357-4
  • Nuytemansa K, Ortelb T, Gomeza L, et al. Variants in chondroitin sulfate metabolism genes in thrombotic storm. Thromb Res. 2018;161:43-51.  https://doi.org/10.1016/j.thromres.2017.11.016
  • Ye J, Esmon C, Johnson A. The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin. J Biol Chem. 1993;268(4):2373-2379.
  • McGee M, Wagner W. Chondroitin Sulfate Anticoagulant Activity Is Linked to Water Transfer Relevance to Proteoglycan Structure in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(10):1921-1927. https://doi.org/10.1161/01.ATV.0000090673.96120.67
  • Moroudas A, Weinberg P, Parker K, Winlove C. The distribution and diffusion of small ions in chondroitin sulfate, hyaluronate and some proteoglycans solutions. Biophys Chem. 1988;32(2-3):257-270.  https://doi.org/10.1016/0301-4622(88)87012-1
  • Email Confirmation

    An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

    Email Confirmation

    We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.