The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kalashnikova T.P.

Wagner Perm State Medical University

Satyukova M.O.

Wagner Perm State Medical University

Anisimov G.V.

First Medico-Pedagogical Center «Lingua Bona»

Karakulova Yu.V.

Wagner Perm State Medical University

Genetic background of dyslexia and dysgraphy in children

Authors:

Kalashnikova T.P., Satyukova M.O., Anisimov G.V., Karakulova Yu.V.

More about the authors

Read: 4132 times


To cite this article:

Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YuV. Genetic background of dyslexia and dysgraphy in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(5):48‑52. (In Russ.)
https://doi.org/10.17116/jnevro202312305148

References:

  1. Lovett MW, Steinbach KA, Frijters JC. Remediating the core deficits of developmental reading disability: a double-deficit perspective. Journal of learning Disabilities. 2000;33(4):334-358.  https://doi.org/10.1177/002221940003300406
  2. Astrom RL, Wadsworth SJ, DeFries JC. Etiology of the stability of reading difficulties: the longitudinal study of reading disabilities. Twin reseearch and human genetics. 2007;10(3):434-439.  https://doi.org/10.1375/twin.10.3.434
  3. Eicher JD, Gruen JR. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular genetics and Metabolism. 2013;110(3):201-212.  https://doi.org/10.1016/j.ymgme.2013.07.001
  4. Velichenkova OA, Akhutina TV, Rusetskaya MN, Gusarova ZV. The problem of disorders of spelling and reading in children: date of the all-russian poll. Special Education. 2019;3:36-49. (In Russ.). https://doi.org/10.26170/sp19-03-03
  5. The International Statistical Classification of Diseases and Related Health Problems. 11th revision (ICD-11). World Health Organization. (In Russ.). https://icd.who.int/ru
  6. Kornev AN. Narusheniya chteniya i pis’ma u detei: uchebno-metodicheskoe posobie. SPb.: MiM; 1997. (In Russ.).
  7. Peterson RL, Pennington BF. Developmental dyslexia. Annual Review of Clinical Psychology. 2015;1-1:283-307.  https://doi.org/10.1146/annurev-clinpsy-032814-112842
  8. Plomin R, Kovas Y. Generalist genes and learning disabilities. Psychological Bulletin. 2005;131(4):592-617.  https://doi.org/10.1037/0033-2909.131.4.592
  9. Grigorenko EL. Developmental dyslexia: an update on genes, brains and environments. Journal of Child Psychology and Psychiatry. 2018;42(1):91-125.  https://doi.org/10.1111/1469-7610.00704
  10. Smith-Spark J, Fisk J, Fawcett A, et al. Investigating the central executive in adult dyslexics: Evidence from phonological and visuospatial working memory performance. European Journal of Cognitive Psychology. 2003;15(4):567-587.  https://doi.org/10.1080/09541440340000024
  11. Gibson CJ, Gruen JR. The human lexinome: genes of language and reading. Journal of Communication Disorders. 2008;41(5):409-420.  https://doi.org/10.1016/j.jcomdis.2008.03.003
  12. Marino C, Citterio A, Giorda R, et al. Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes, Brain and Behavior. 2007;6(7):640-646.  https://doi.org/10.1111/j.1601-183x.2006.00291.x
  13. Scerri TS, Schulte-Körne G. Genetics of developmental dyslexia. European Child Adolescent Psychiatry. 2010;19(3):179-197.  https://doi.org/10.1007/s00787-009-0081-0
  14. Unger N, Heim S, Hilger DI, et al. Identification of Phonology-Related Genes and Functional Characterization of Broca’s and Wernicke’s Regions in Language and Learning Disorders. Frontiers in Neuroscience. 2021;15:680-762.  https://doi.org/10.3389/fnins.2021.680762
  15. Brkanac Z, Chapman NH, Matsushita MM, et al. Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2007;144B(4):556-560.  https://doi.org/10.1002/ajmg.b.30471
  16. Gialluisi A, Andlauer TFM, Mirza-Schreiber N, et al. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry. 2019;9(1):77.  https://doi.org/10.1038/s41398-019-0402-0
  17. Poelmans G, Engelen JJM, Lent-Albrechts JV, et al. Identification of novel dyslexia candidate genes through the analysis of a chromosomal deletion. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2009;150B(1):140-147.  https://doi.org/10.1002/ajmg.b.30787
  18. Ramus F. Dyslexia. Talk of two theories. Nature. 2001;412(6845):393-394.  https://doi.org/10.1038/35086683
  19. König IR, Schumacher J, Hoffmann P, et al. Mapping for Dyslexia and Related Cognitive Trait Loci Provides Strong Evidence for Further Risk Genes on Chromosome 6p21. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2011;156(1):36-43.  https://doi.org/10.1002/ajmg.b.31135
  20. Wigg KG, Couto JM, Feng Y, et al. Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry. 2004;9(12):1111-1121. https://doi.org/10.1038/sj.mp.4001543
  21. Sun Y, Gao Y, Zhou Y, et al. Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2014;165(8):627-634.  https://doi.org/10.1002/ajmg.b.32267
  22. Kong R, Shao S, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2016;171(2):203-208.  https://doi.org/10.1002/ajmg.b.32392
  23. Bakker SC, Beter M, van der Meulen EM, et al. DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. American Journal of Medical Genetics Part B Neuropsychiatric Genetics. 2005;132B(1):50-52.  https://doi.org/10.1002/ajmg.b.30089
  24. Sánchez-Morán M, Hernández JA, Duñabeitia JA, et al. Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS One. 2018;13(10):e0206431. https://doi.org/10.1371/journal.pone.0209718
  25. Smith SD, Pennington BF, Boada R, Shriberg LD. Linkage of speech sound disorder to reading disability loci. Journal of Child Psychology and Psychiatry. 2005;46(10):1057-1066. https://doi.org/10.1111/j.1469-7610.2005.01534.x
  26. Liu W, Wu X, Zhou D, Gong Q. Reading deficits correlate with cortical and subcortical volume changes in a genetic migration disorder. Medicine. 2019;98(36):e17070. https://doi.org/10.1097/md.0000000000017070
  27. Ozernov-Palchik O, Gaab N. Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science. 2016;7(2):156-176.  https://doi.org/10.1002/wcs.1383
  28. Paracchini S, Thomas A, Castro S, et al. The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics. 2006;15(10):1659-1666. https://doi.org/10.1093/hmg/ddl089
  29. Burbridge TJ, Wang Y, Volz AJ, et al. Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience. 2008;152(3):723-733.  https://doi.org/10.1016/j.neuroscience.2008.01.020
  30. Powers NR, Eicher JD, Butter F, et al. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. The American Journal of Human Genetics. 2013;93(1):19-28.  https://doi.org/10.1016/j.ajhg.2013.05.008
  31. Meng H, Powers NR, Tang L, et al. A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics. 2011;41(1):58-66.  https://doi.org/10.1007/s10519-010-9408-3
  32. Darki F, Peyrard-Janvid M, Matsson H, et al. Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry. 2012;72(8):671-676.  https://doi.org/10.1016/j.biopsych.2012.05.008
  33. Wilcke A, Weissfuss J, Kirsten H, et al. The role of gene DCDC2 in German dyslexics. Annals of Dyslexia. 2009;59(1):1-11.  https://doi.org/10.1007/s11881-008-0020-7
  34. Marino C, Meng H, Mascheretti S, et al. DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatric Genetics. 2012;22(1):25-30.  https://doi.org/10.1097/ypg.0b013e32834acdb2
  35. Jamadar S, Powers NR, Meda SA, et al. Genetic influences of resting state fMRI activity in language-related brain regions in healthy controls and schizophrenia patients: a pilot study. Brain Imaging and Behavior. 2013;7(1):15-27.  https://doi.org/10.1007/s11682-012-9168-1
  36. Enard W, Gehre S, Hammerschmidt K, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell. 2009;137(5):961-971.  https://doi.org/10.1016/j.cell.2009.03.041
  37. Reimers-Kipping S, Hevers W, Pääbo S, Enard W. Humanized Foxp2 specifically affects cortico-based ganglia circuits. Neuroscience. 2011;175:75-84.  https://doi.org/10.1016/j.neuroscience.2010.11.042
  38. Belton E, Salmond CH, Watkins KE, et al. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Human Brain Mapping. 2003;18(3):194-200.  https://doi.org/10.3410/f.1015278.196176
  39. Abrahams BS, Tentler D, Perederiy JV, et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proceedings of the National Academy of Sciences. 2007;104(45):17849-17854. https://doi.org/10.1073/pnas.0706128104
  40. Whitehouse AJ, Bishop DV, Ang QW, et al. CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior. 2011;10(4):451-456.  https://doi.org/10.1111/j.1601-183x.2011.00684.x
  41. Corfas G, Velardez MO, Ko CP, et al. Mechanisms and roles of axon-Schwann cell interactions. Journal of Neuroscience. 2004;24(42):9250-9260. https://doi.org/10.1523/jneurosci.3649-04.2004
  42. Tammimies K, Tapia-Páez I, Rüegg J, et al. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor-B and DNA methylation. Molecular Endocrinology. 2012;26(4):619-629.  https://doi.org/10.1210/me.2011-1376
  43. Tammimies K, Vitezic M, Matsson H, et al. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biological Psychiatry. 2013;73(6):583-590.  https://doi.org/10.1016/j.biopsych.2012.08.012
  44. Scerri TS, Darki F, Newbury DF, et al. The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS One. 2012;7(11):e50321. https://doi.org/10.1371/journal.pone.0050321
  • Falls in elderly and senile patients. Federation Health Ministry Clinical recommendations. 2020. (In Russ.). https://cr.rosminzdrav.ru/#!/recomend/1030
  • Chronic pain in elderly and senile patients. Russian Federation Health Ministry Clinical recommendations. 2020. (In Russ.). https://cr.rosminzdrav.ru/#!/recomend/1033
  • Clinical recommendations of the Ministry of Health of Russia «Gonarthrosis». 2021. (In Russ.). https://cr.minzdrav.gov.ru/recomend/667_1
  • Clinical recommendations of the Ministry of Health of Russia «Coxarthrosis». 2021. (In Russ.). https://cr.minzdrav.gov.ru/recomend/666_1
  • Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoart Cart. 2008;16 Suppl 3:S14-18.  https://doi.org/10.1016/j.joca.2008.06.008
  • Du Souich P, Garcia A,Verges J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med. 2009;3(8A):1451-1463. https://doi.org/10.1111/j.1582-4934.2009.00826.x
  • de Abajo F, Gil M, Garcia Poza P, et al. Risk of nonfatal acute myocardial infarction associated with non-steroidal antiinflammatory drugs, non-narcotic analgesics and other drugs used in osteoarthritis: a nested case-control study. Pharmacoepidemiol Drug Saf. 2014;23:1128-1138. https://doi.org/10.1002/pds.3617
  • King D, Xiang J. Glucosamine/Chondroitin and Mortality in a US NHANES Cohort. J Am Board Fam Med. 2020;33(6):842-847.  https://doi.org/10.3122/jabfm.2020.06.200110
  • Bell G, Kantor E, Lampe J, et al. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol. 2012;27(8):593-603.  https://doi.org/10.1007/s10654-012-9714-6
  • Morrison L. Reduction of ischemic coronary heart disease by chondroitin sulfate. Angiology. 1971;22(3):165-174.  https://doi.org/10.1177/000331977102200308
  • Morrison L, Enrick N. Coronary Heart Disease: Reduction of Death Rate By Chondroitin Sulfate. Angiology. 1973;24(5):269-287.  https://doi.org/10.1177/000331977302400503
  • Nakazawa K, Murata K. Comparative study of the effects of chondroitin sulfate isomers on atherosclerotic subjects. Clinical Trial. Z Alternsforsch. 1979;34(2):153-159. 
  • Mazzucchelli R, Rodrı´guez-Martı´n S, Garcı´a-Vadillo A, et al. Risk of acute myocardial infarction among new users of chondroitin sulfate: A nested case-control study. PLoS ONE. 2021;16(7):e0253932. https://doi.org/10.1371/journal.pone.0253932
  • Melgar-Lesmes P, Sánchez-Herrero A, Lozano-Juan F, et al. Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thromb. Haemost. 2018;118(7):1329-1339. https://doi.org/10.1055/s-0038-1657753
  • Williams K, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551-561.  https://doi.org/10.1161/01.atv.15.5.551
  • Adhikara I, Yagi K, Mayasari D, et al. Chondroitin Sulfate Nacetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arterioscler Thromb Vasc Biol. 2021 Mar;41(3):1076-1091. https://doi.org/10.1161/ATVBAHA.120.315789
  • Bell J, Rhind S, Di Battista A, et al. Biomarkers of glycocalyx injury are associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage: a case series supporting a new hypothesis. Neurocrit Care. 2016;26(3):339-347.  https://doi.org/10.1007/s12028-016-0357-4
  • Nuytemansa K, Ortelb T, Gomeza L, et al. Variants in chondroitin sulfate metabolism genes in thrombotic storm. Thromb Res. 2018;161:43-51.  https://doi.org/10.1016/j.thromres.2017.11.016
  • Ye J, Esmon C, Johnson A. The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin. J Biol Chem. 1993;268(4):2373-2379.
  • McGee M, Wagner W. Chondroitin Sulfate Anticoagulant Activity Is Linked to Water Transfer Relevance to Proteoglycan Structure in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(10):1921-1927. https://doi.org/10.1161/01.ATV.0000090673.96120.67
  • Moroudas A, Weinberg P, Parker K, Winlove C. The distribution and diffusion of small ions in chondroitin sulfate, hyaluronate and some proteoglycans solutions. Biophys Chem. 1988;32(2-3):257-270.  https://doi.org/10.1016/0301-4622(88)87012-1
  • Email Confirmation

    An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

    Email Confirmation

    We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.