The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kiselev A.V.

Semenov Institute of Chemical Physics

Kotov A.S.

Vladimirsky Moscow Regional Research Clinical Institute

Mikhaleva M.G.

Semenov Federal Research Center for Chemical Physics

Stovbun S.V.

Semenov Institute of Chemical Physics

Kotov S.V.

Vladimirsky Moscow Regional Research Clinical Institute

Ampakines — a promising approach to neuroprotection

Authors:

Kiselev A.V., Kotov A.S., Mikhaleva M.G., Stovbun S.V., Kotov S.V.

More about the authors

Read: 5576 times


To cite this article:

Kiselev AV, Kotov AS, Mikhaleva MG, Stovbun SV, Kotov SV. Ampakines — a promising approach to neuroprotection. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(9):54‑62. (In Russ.)
https://doi.org/10.17116/jnevro202212209154

Recommended articles:

References:

  1. Olney JW. The toxic effects of glutamate and related compounds in the retina and the brain. Retina. 1982;2(4):341-359. 
  2. Chen S, Diamond JS. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J Neurosci. 2002;22(6):2165-2173. https://doi.org/10.1523/JNEUROSCI.22-06-02165.2002
  3. Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347-364.  https://doi.org/10.1038/s41422-019-0164-5
  4. Datta A, Sarmah D, Mounica L, et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res. 2020;11(6):1185-1202. https://doi.org/10.1007/s12975-020-00806-z
  5. Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2021 May 6;23(5):23-29.  https://doi.org/10.1002/med.21817
  6. Lujan B, Dagostin A, von Gersdorff H. Presynaptic Diversity Revealed by Ca2+-Permeable AMPA Receptors at the Calyx of Held Synapse. J Neurosci. 2019;39(16):2981-2994. https://doi.org/10.1523/JNEUROSCI.2565-18.2019
  7. Granzotto A, Canzoniero LMT, Sensi SL. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front Mol Neurosci. 2020;13:600089. https://doi.org/10.3389/fnmol.2020.600089
  8. Zanetti L, Regoni M, Ratti E, et al. Presynaptic AMPA Receptors in Health and Disease. Cells. 2021;10(9):2260. https://doi.org/10.3390/cells10092260
  9. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8(6):562-573.  https://doi.org/10.1177/1073858402238515
  10. Watkins JC, Jane DE. The glutamate story. Br J Pharmacol. 2006;147 Suppl 1(Suppl 1):S100-108.  https://doi.org/10.1038/sj.bjp.0706444
  11. Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci. 2020;14:579953. https://doi.org/10.3389/fnins.2020.579953
  12. Delgado MR, Dickerson KC. Reward-related learning via multiple memory systems. Biol Psychiatry. 2012;72(2):134-141.  https://doi.org/10.1016/j.biopsych.2012.01.023
  13. Gillespie AK, Astudillo Maya DA, Denovellis EL, et al. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron. 2021;109(19):3149-3163.e6.  https://doi.org/10.1016/j.neuron.2021.07.029
  14. Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron. 2009;61(3):340-350.  https://doi.org/10.1016/j.neuron.2009.01.015
  15. Anggono V, Huganir RL. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol. 2012;22(3):461-469.  https://doi.org/10.1016/j.conb.2011.12.006
  16. Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci. 2013 Mar;15(1):11-27.  https://doi.org/10.31887/DCNS.2013.15.1/jhenley
  17. Diering GH, Huganir RL. The AMPA Receptor Code of Synaptic Plasticity. Neuron. 2018;100(2):314-329.  https://doi.org/10.1016/j.neuron.2018.10.018
  18. Frankland PW, Josselyn SA, Köhler S. The neurobiological foundation of memory retrieval. Nat Neurosci. 2019;22(10):1576-1585. https://doi.org/10.1038/s41593-019-0493-1
  19. Yamasaki M. Molecular and anatomical evidence for the input pathway- and target cell type-dependent regulation of glutamatergic synapses. Anat Sci Int. 2016;91(1):8-21.  https://doi.org/10.1007/s12565-015-0303-0
  20. Seewald A, Schönherr S, Hörtnagl H, et al. Fear Memory Retrieval Is Associated With a Reduction in AMPA Receptor Density at Thalamic to Amygdala Intercalated Cell Synapses. Front Synaptic Neurosci. 2021 Jul 6;13:634558. https://doi.org/10.3389/fnsyn.2021.634558
  21. Choquet D. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci. 2018;38(44):9318-9329. https://doi.org/10.1523/JNEUROSCI.2119-18.2018
  22. Zhang H, Bramham CR. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front Synaptic Neurosci. 2020;12:26.  https://doi.org/10.3389/fnsyn.2020.00026
  23. Opazo P, Sainlos M, Choquet D. Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol. 2012;22(3):453-460.  https://doi.org/10.1016/j.conb.2011.10.010
  24. Scheefhals N, MacGillavry HD. Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci. 2018;91:82-94.  https://doi.org/10.1016/j.mcn.2018.05.002
  25. Ramsey AM, Tang AH, LeGates TA, et al. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Sci Adv. 2021;7(34):eabf3126. https://doi.org/10.1126/sciadv.abf3126
  26. Zhang H, Zhang C, Vincent J, et al. Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington’s disease models. Nat Commun. 2018;9(1):4272-3279. https://doi.org/10.1038/s41467-018-06675-3
  27. Opazo P, Viana da Silva S, Carta M, et al. CaMKII Metaplasticity Drives Aβ Oligomer-Mediated Synaptotoxicity. Cell Rep. 2018;23(11):3137-3145. https://doi.org/10.1016/j.celrep.2018.05.036
  28. Zhu M, Cortese GP, Waites CL. Parkinson’s disease-linked Parkin mutations impair glutamatergic signaling in hippocampal neurons. BMC Biol. 2018 Sep 10;16(1):100.  https://doi.org/10.1186/s12915-018-0567-7
  29. Lee K, Goodman L, Fourie C, et al. AMPA Receptors as Therapeutic Targets for Neurological Disorders. Adv Protein Chem Struct Biol. 2016;103:203-261.  https://doi.org/10.1016/bs.apcsb.2015.10.004
  30. Berry-Kravis EM, Lindemann L, Jønch AE, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280-299.  https://doi.org/10.1038/nrd.2017.221
  31. O’Connor M, Shentu YP, Wang G, et al. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer’s Disease. iScience. 2020;23(9):101465. https://doi.org/10.1016/j.isci.2020.101465
  32. Arai AC, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8(5):583-602.  https://doi.org/10.2174/138945007780618490
  33. Zeng F, Zhang Q, Liu Y, et al. AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain. Mol Brain. 2021;14(1):45.  https://doi.org/10.1186/s13041-021-00757-y
  34. Lynch G, Gall CM. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 2006;29(10):554-562.  https://doi.org/10.1016/j.tins.2006.07.007
  35. Xia YF, Kessler M, Arai AC. Positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators have different impact on synaptic transmission in the thalamus and hippocampus. J Pharmacol Exp Ther. 2005;313(1):277-285.  https://doi.org/10.1124/jpet.104.078196
  36. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6):a005710. https://doi.org/10.1101/cshperspect.a005710
  37. Lømo T. Discovering long-term potentiation (LTP) — recollections and reflections on what came after. Acta Physiol (Oxf). 2018;222(2): 343-348.  https://doi.org/10.1111/apha.12921
  38. O’Leary H, Bernard PB, Castano AM, Benke TA. Enhanced long term potentiation and decreased AMPA receptor desensitization in the acute period following a single kainate induced early life seizure. Neurobiol Dis. 2016;87:134-144.  https://doi.org/10.1016/j.nbd.2015.12.005
  39. Huang L, Cichon J, Ninan I, Yang G. Post-anesthesia AMPA receptor potentiation prevents anesthesia-induced learning and synaptic deficits. Sci Transl Med. 2016;8(344):344ra85. https://doi.org/10.1126/scitranslmed.aaf7151
  40. Sun Y, Liu K, Martinez E, et al. AMPAkines and morphine provide complementary analgesia. Behav Brain Res. 2017;334:1-5.  https://doi.org/10.1016/j.bbr.2017.07.020
  41. Su C, Lin HY, Yang R, et al. AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain. Anesthesiology. 2016;125(5):1030-1043. https://doi.org/10.1097/ALN.0000000000001336
  42. Miao HH, Miao Z, Pan JG, et al. Brain-derived neurotrophic factor produced long-term synaptic enhancement in the anterior cingulate cortex of adult mice. Mol Brain. 2021;14(1):140.  https://doi.org/10.1186/s13041-021-00853-z
  43. Klimesch W, Doppelmayr M, Russegger H, Pachinger T. Theta band power in the human scalp EEG and the encoding of new information. Neuroreport. 1996;7(7):1235-1240. https://doi.org/10.1097/00001756-199605170-00002
  44. Kotov SV, Romanova MV, Kondur AA, et al. Reorganization of bioelectrical activity in the neocortex after stroke by rehabilitation using a brain–computer interface controlling a wrist exoskeleton. Neurosc Behav Physiol. 2020;50(9): 1146-1154. https://doi.org/10.1007/s11055-020-01017-7
  45. Voronina TA, Borlikova GG, Garibova TL, et al. Effect of nooglutil on benzodiazepine withdrawal syndrome and binding of 3H-spiperone with D2 receptors in rat striatum. Bull Exp Biol Med. 2002;134(5):448-450.  https://doi.org/10.1023/a:1022634112815
  46. Motin VG, Kiselev AV, Stovbun IS, et al. N-(5-Hydroxynicotinoil)-L-Glutamic Acid Calcium Salt Modifies Responses of Rat Hippocampal CA1 Pyramidal Neurons during Orthodromic Stimulation. Bull Exp Biol Med. 2018;165(1):27-30.  https://doi.org/10.1007/s10517-018-4091-0
  47. Kiselev AV, Vedenkin AS, Stovbun IS, et al. Calcium Salt of N-(5-Hydroxynicotinoyl)-L-Glutamic Acid Weakens Depressive-Like Behavior and Parkinsonian Syndrome in Experiment on Rodents. Bull Exp Biol Med. 2019;168(1):48-51.  https://doi.org/10.1007/s10517-019-04643-5
  48. FINAL REPORT. Study No. 100043489. October 22, 2018. https://www.eurofins.com/media/12143410/gpcr-products-and-services.pdf
  49. Quinan V, Dugar A, Bauer D. Long Term Potentiation in Mouse Hippocampal Slices in an Undergraduate Laboratory Course. J Undergrad Neurosci Educ. 2019;17(2):A111-A118.
  50. Chen CJ, Ding D, Starke RM, et al. Endovascular vs medical management of acute ischemic stroke. Neurology. 2015;85(22):1980-1990. https://doi.org/10.1212/WNL.0000000000002176
  51. Asadi H, Dowling R, Yan B, et al. Advances in endovascular treatment of acute ischaemic stroke. Intern Med J. 2015;45(8):798-805.  https://doi.org/10.1111/imj.12652
  52. Sardar P, Chatterjee S, Giri J, et al. Endovascular therapy for acute ischaemic stroke: a systematic review and meta-analysis of randomized trials. Eur Heart J. 2015;36(35):2373-2380. https://doi.org/10.1093/eurheartj/ehv270
  53. Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197-218.  https://doi.org/10.1016/j.pathophys.2009.12.001
  54. Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med. 2017;108:668-682.  https://doi.org/10.1016/j.freeradbiomed.2017.04.026
  55. Delavaran H, Aked J, Sjunnesson H, et al. Spontaneous Recovery of Upper Extremity Motor Impairment After Ischemic Stroke: Implications for Stem Cell-Based Therapeutic Approaches. Transl Stroke Res. 2017;8(4):351-361.  https://doi.org/10.1007/s12975-017-0523-9
  56. Kluge MG, Jones K, Kooi OL, et al. Age-dependent Disturbances of Neuronal and Glial Protein Expression Profiles in Areas of Secondary Neurodegeneration Post-stroke. Neuroscience. 2018;393:185-195.  https://doi.org/10.1016/j.neuroscience.2018.07.034
  57. Sanchez-Bezanilla S, Hood RJ, Collins-Praino LE, et al. More than motor impairment: A spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J Cereb Blood Flow Metab. 2021;41(9):2439-2455. https://doi.org/10.1177/0271678X211005877
  58. Lyden P, Pryor KE, Coffey CS, et al. Final Results of the RHAPSODY Trial: A Multi-Center, Phase 2 Trial Using a Continual Reassessment Method to Determine the Safety and Tolerability of 3K3A-APC, A Recombinant Variant of Human Activated Protein C, in Combination with Tissue Plasminogen Activator, Mechanical Thrombectomy or both in Moderate to Severe Acute Ischemic Stroke. Ann Neurol. 2019;85(1):125-136.  https://doi.org/10.1002/ana.25383
  59. Matei N, Camara J, Zhang JH. The Next Step in the Treatment of Stroke. Front Neurol. 2021;11:582605. https://doi.org/10.3389/fneur.2020.582605
  60. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157-188.  https://doi.org/10.1016/j.pneurobio.2013.11.006
  61. Shi M, Chen F, Chen Z, et al. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci. 2021;15:685201. https://doi.org/10.3389/fncel.2021.685201
  62. Stovbun S, Kiselev A, Sergienko V. Experimental study of nootropic and neuroprotective effects of calcium n-(5-hydroxynicotinoil)-L-glutamate. Bulletin of the Moscow region State University. Series Natural Sciences. 2011;2:83-93. 
  63. Bahr BA, Bendiske J, Brown QB, et al. Survival signaling and selective neuroprotection through glutamatergic transmission. Exp Neurol. 2002;174(1):37-47.  https://doi.org/10.1006/exnr.2001.7852
  64. Radin DP, Rogers GA, Hewitt KE, et al. Ampakines Attenuate Staurosporine-induced Cell Death in Primary Cortical Neurons: Implications in the ‘Chemo-Brain’ Phenomenon. Anticancer Res. 2018;38(6):3461-3465. https://doi.org/10.21873/anticanres.12615
  65. Wu X, Zhu D, Jiang X, et al. AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J Neurochem. 2004;90(4):807-818.  https://doi.org/10.1111/j.1471-4159.2004.02526.x
  66. Culmsee C, Junker V, Kremers W, et al. Combination therapy in ischemic stroke: synergistic neuroprotective effects of memantine and clenbuterol. Stroke. 2004;35(5):1197-1202. https://doi.org/10.1161/01.STR.0000125855.17686.6d
  67. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5(2):160-170.  https://doi.org/10.1038/nrd1958
  68. Lapchak PA. Memantine, an uncompetitive low affinity NMDA open-channel antagonist improves clinical rating scores in a multiple infarct embolic stroke model in rabbits. Brain Res. 2006;1088(1):141-147.  https://doi.org/10.1016/j.brainres.2006.02.093
  69. López-Valdés HE, Clarkson AN, Ao Y, et al. Memantine enhances recovery from stroke. Stroke. 2014;45(7):2093-2100. https://doi.org/10.1161/STROKEAHA.113.004476
  70. MartInez-Coria H, Arrieta-Cruz I, Cruz ME, et al. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regen Res. 2021;16(3):433-439.  https://doi.org/10.4103/1673-5374.293129
  71. Luo Y, Zhou J, Li MX, et al. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell. 2015;14(2):170-179.  https://doi.org/10.1111/acel.12282
  72. Cheng YJ, Lin CH, Lane HY. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer’s Disease. Int J Mol Sci. 2021 Feb 25;22(5):2283-2286. https://doi.org/10.3390/ijms22052283
  73. Shors TJ, Servatius RJ, Thompson RF, et al. Enhanced glutamatergic neurotransmission facilitates classical conditioning in the freely moving rat. Neurosci Lett. 1995;186(2-3):153-156.  https://doi.org/10.1016/0304-3940(95)11309-k
  74. Porrino LJ, Daunais JB, Rogers GA, et al. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol. 2005;3(9):e299. https://doi.org/10.1371/journal.pbio.0030299
  75. Hampson RE, España RA, Rogers GA, et al. Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology (Berl). 2009;202(1-3):355-369.  https://doi.org/10.1007/s00213-008-1360-z
  76. Lynch G, Palmer LC, Gall CM. The likelihood of cognitive enhancement. Pharmacol Biochem Behav. 2011;99(2):116-129.  https://doi.org/10.1016/j.pbb.2010.12.024
  77. Mozafari N, Shamsizadeh A, Fatemi I, et al. CX691, as an AMPA receptor positive modulator, improves the learning and memory in a rat model of Alzheimer’s disease. Iran J Basic Med Sci. 2018;21(7):724-730.  https://doi.org/10.22038/IJBMS.2018.28544.6934
  78. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48(1):46-57.  https://doi.org/10.1016/j.cortex.2011.07.002
  79. Lynch G, Gall CM. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci. 2013;7:143-147.  https://doi.org/10.3389/fnins.2013.00143
  80. Wahl D, Coogan SC, Solon-Biet SM, et al. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging. 2017;12:1419-1428. https://doi.org/10.2147/CIA.S145247
  81. Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease--advantages, caveats, future outlook. Eur J Neurosci. 2012;35(12):1908-1916. https://doi.org/10.1111/j.1460-9568.2012.08165.x
  82. Kadriu B, Musazzi L, Johnston JN, et al. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov Today. 2021;S1359-6446(21)00353-6.  https://doi.org/10.1016/j.drudis.2021.07.027
  83. Kiselev AV, Vostrikova EV, Kalinina TS, Stovbun SV. A randomized, double-blind, placebo-controlled study of the efficacy and safety of ampasse in the treatment of chronic cerebral ischemia. Korsakov’s Journal of Neurology and Psychiatry. 2019;119 (4):21-25. (In Russ.). https://doi.org/10.17116/jnevro201911904121
  84. Skoromets AA, Kotov SV, Voronkov PB, et al. Efficacy and safety of treatment with ampasse: the results of a randomized, double-blind, placebo-controlled trial in patients with chronic cerebrovascular disorders. Korsakov Journal of Neurology and Psychiatry. 2021;121(5):26-32. (In Russ.). https://doi.org/10.17116/jnevro202112105126
  85. Kotov SV, Borisova VA, Slyunkova EV, et al. Dynamics of recovery of cognitive deficit in patients in the early recovery period of ischemic stroke. Korsakov Journal of Neurology and Psychiatry. 2021;121(11):26-32. (In Russ.). https://doi.org/10.17116/jnevro202112111126
  86. Coleman ER, Moudgal R, Lang K, et al. Early Rehabilitation After Stroke: a Narrative Review. Curr Atheroscler Rep. 2017;19(12):59-64.  https://doi.org/10.1007/s11883-017-0686-6
  87. Takahashi T. Novel synaptic plasticity enhancer drug to augment functional recovery with rehabilitation. Curr Opin Neurol. 2019;32(6):822-827.  https://doi.org/10.1097/WCO.0000000000000748
  88. Kumar A, Kitago T. Pharmacological Enhancement of Stroke Recovery. Curr Neurol Neurosci Rep. 2019;19(7):43.  https://doi.org/10.1007/s11910-019-0959-2
  89. Szelenberger R, Kostka J, Saluk-Bijak J, Miller E. Pharmacological Interventions and Rehabilitation Approach for Enhancing Brain Self-repair and Stroke Recovery. Curr Neuropharmacol. 2020;18(1):51-64.  https://doi.org/10.2174/1570159X17666190726104139

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.