Алесенко А.В.

ФГБУН «Институт биохимической физики им. Н.М. Эмануэля» РАН

Гутнер У.А.

ФГБУН «Институт биохимической физики им. Н.М. Эмануэля» РАН

Небогатиков В.О.

ФГБУН «Институт физиологически активных веществ» РАН

Шупик М.А.

ФГБУН «Институт биохимической физики им. Н.М. Эмануэля» РАН

Устюгов А.А.

ФГБУН «Институт физиологически активных веществ» РАН

Роль липидов в патогенезе бокового амиотрофического склероза

Авторы:

Алесенко А.В., Гутнер У.А., Небогатиков В.О., Шупик М.А., Устюгов А.А.

Подробнее об авторах

Прочитано: 5041 раз


Как цитировать:

Алесенко А.В., Гутнер У.А., Небогатиков В.О., Шупик М.А., Устюгов А.А. Роль липидов в патогенезе бокового амиотрофического склероза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(10):108‑117.
Alessenko AV, Gutner UA, Nebogatikov VO, Shupik MA, Ustyugov AA. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(10):108‑117. (In Russ.)
https://doi.org/10.17116/jnevro2020120101108

Рекомендуем статьи по данной теме:

Боковой амиотрофический склероз (БАС) — неизлечимое нейродегенеративное заболевание, характеризующееся селективной дегенерацией верхних и нижних двигательных нейронов. Клинические признаки болезни выражаются в развитии мышечных атрофий, нарушений артикуляции и глотания, фасцикуляций, изменении рефлексов и спастичности. Основная причина смерти больных, которая наступает в среднем через 3—5 лет с момента появления первых симптомов заболевания, — паралич дыхательной мускулатуры. Около 90% всех зарегистрированных случаев БАС имеют неизвестную этиологию и классифицируются как спорадические. Остальные 10% — это наследственные формы БАС, характеризующиеся мутациями в ряде генов, в основном аутосомно-доминантного характера [1].

Мутации, связанные с БАС, приводят к конформационной нестабильности и агрегации белков (SOD1 [2], VCP [3], OPTIN [4], UBQLN2 [5]), нарушениям процессинга и транспорта РНК (C9ORF72 [6], TDP-43 [7], FUS [8, 9]), изменению динамики цитоскелета (SQSTM1 [10], DCTN1 [11], TUBA4A [12, 13]). Исключительная генетическая изменчивость БАС объясняет сложность заболевания, при котором гетерогенные механизмы приводят к общему патогенезу. Ключевыми чертами течения данного заболевания являются эксайтотоксичность [14], окислительный стресс, дисфункции митохондрий [15], нейровоспалительные и иммунные реакции [16]. В последние годы предпринимается изучение роли липидов в патогенезе данного заболевания.

Хотя болезнь известна со второй трети XIX века, радикальных средств лечения БАС до сих пор не найдено. В настоящее время в мире существует всего два лекарственных препарата для лечения БАС — рилузол (понижает эксайтотоксичность глутамата) и эдаравон (проявляет антиоксидантные свойства), которые демонстрируют незначительное увеличение выживаемости больных БАС [17, 18].

Модели БАС, используемые для изучения механизма заболевания

Для изучения механизма любого заболевания, в частности БАС, необходимо наличие его моделей как на клеточном уровне, так и на животных. Первым прорывом в разработке моделей для изучения БАС с использованием грызунов было обнаружение в начале 1990-х годов мутаций в гене, кодирующем супероксиддисмутазу 1 (SOD1), которые были связаны с этим заболеванием [2]. Подавляющее большинство случаев семейной формы БАС обусловлено генетическими мутациями в гене SOD1 (15%) и повторением экспансии нуклеотидов в на участке C9ORF72 (около 40—50% семейной и ~10% спорадической форм БАС). К настоящему времени выявлено более 160 мутаций в гене SOD1, связанных с патогенезом БАС, при этом, согласно статистическим данным, мутации SOD1 обнаруживаются в 20—25% случаев БАС [19]. На основе мутаций гена SOD1 были созданы модели трансгенных животных, которые в настоящее время являются инструментом для изучения молекулярных механизмов патогенеза БАС [1, 2, 19, 20].

Основной функцией белка SOD1 является катализ реакции дисмутации супероксида в кислород, т.е. защита организма от высокотоксичных кислородных радикалов. Дисфункция этого фермента в результате мутаций приводит к нарушению гомеостаза антиоксидантных ферментных систем организма. Наличие повышенного содержания активных форм кислорода и азота приводит к разрушению клеточных структур, липидов, белков, а также ДНК и РНК. Кроме того, влияние активных форм на митохондрии и их метаболические процессы в конечном итоге вызывает повышение уровня активных форм кислорода/активных форм азота, что приводит к окислению митохондриальных белков, липидов и ДНК. Открытие мутаций гена SOD1 при БАС повлекло за собой исследования роли свободных радикалов и процессов окисления, белков, ДНК, липидов, в том числе мембранных фосфолипидов в развитии этого заболевания [2, 20, 21]. Однако в дальнейшем было показано, что мутации гена SOD1 не являются единственной причиной активации окислительных процессов в организме при БАС, так как в случаях мутаций других генов также наблюдается развитие окислительного стресса [22]. Тем не менее, поскольку повышенное содержание продуктов перекисного окисления липидов (ПОЛ), протекающего в центральной нервной системе, обнаруживается в цереброспинальной жидкости, плазме и моче при БАС, предлагается проведение поиска биомаркеров этого заболевания среди продуктов окислительного стресса [23, 24].

Модели БАС с экспрессией мутантных изоформ SOD1

Были созданы модели БАС на различных видах грызунов, включая мышей и крыс, у которых происходила экспрессия мутантных изоформ SOD1. Наиболее популярными стали мышиные модели, сверхэкспрессирующие мутантные формы SOD1 человека. Также были разработаны мышиные модели, экспрессирующие множественные копии мутанта мышиного SOD1 с ранним смертельным заболеванием моторных нейронов [25]. У животных с экспрессией измененного SOD1 развивается болезнь двигательного нейрона, напоминающая болезнь человека, с разными сроками манифестации и скоростью прогрессирования. Центральными признаками болезни у этих животных являются ранний астро- и микроглиоз, глутаматобусловленная эксайтотоксичность, дефицит транспорта аксонов, вакуолизация митохондрий, нарушение структуры нейрофиламентов и снижение метаболической поддержки двигательных нейронов окружающими их глиальными клетками [25—27]. В итоге происходит избирательная потеря спинальных двигательных нейронов, вызывающая обширное истощение и атрофию мышц как задних, так и передних конечностей, что приводит к параличу и смерти. Важным отличием этих мышиных моделей от особенностей заболеваний человека состоит в том, что значительная кортикальная нейрональная дегенерация, фундаментальная особенность болезни человека (и требуемая для диагностики БАС), не наблюдается в большинстве этих моделей [27]. Это критическое отличие от фенотипа болезни может отражать основные патогенные недостатки мышиной модели SOD1 в качестве инструмента для изучения болезни моторных нейронов [28].

Тем не менее в течение последних 20 лет мышиные модели БАС с экспрессией SOD1, в основном модель SOD1G93A, а затем модели SOD1G37R, SOD1G85R и SOD1G86R, использовались для характеристики патологии БАС, а также для изучения конкретных преимуществ потенциальных методов лечения [28, 29]. Популярность таких моделей определялась наличием демиелинизированных аксонов, а также тем, что уровни экспрессии переносчиков МСТ1 у мышей были снижены так же, как и в коре человека при БАС [30].

Кроме мышиных моделей, были созданы линии трансгенных крыс со сверхэкспрессией SOD1, оказавшиеся особенно полезными для оценки терапевтических исследований в связи с преимуществами в размере животных, особенно при введении терапевтических препаратов, например непрерывной интраспинальной доставки терапевтических соединений через осмотические мини-насосы [29].

Многие доклинические испытания потенциальных терапевтических средств были выполнены на мутантных моделях SOD1 мышей и крыс (в основном на мутантной линии SOD1G93A, а не на мутантной линии SOD1G37R). Один из самых многообещающих результатов — миноциклин, который ингибирует нейровоспаление и апоптотическую гибель клеток, что значительно влияет на заболевание у мышей SOD1G93A [31, 32]. Для оценки вклада отдельных клеточных популяций в патогенез БАС были созданы модельные животные, которые избирательно экспрессируют мутантный SOD1 в специфических глиальных и нейронных субпопуляциях [26, 33].

Изменение метаболизма РНК при БАС и создание моделей с мутациями в белках, обеспечивающих метаболизм РНК

Исследования показали, что у большинства больных БАС патология была вызвана нарушениями в метаболизме РНК, что является основным отличием от животных моделей с мутациями в гене SOD1. Было установлено что в нервной ткани пациентов с БАС и фронтотемпоральной деменцией не было обнаружено мутаций в гене SOD1, однако при этом присутствовали TDP-43-положительные цитоплазматические включения в моторных нейронах [34, 35]. Это наблюдение привело к тому, что основное внимание было уделено роли измененного метаболизма РНК в патогенезе БАС. Выявленные белковые агрегаты были убиквитинированы, фосфорилированы и содержали расщепленные C-концевые фрагменты TDP-43 — от английского «Transactive response DNA binding protein 43 kDa». Гипотеза о том, что БАС является РНК протеинопатией, была также подтверждена обнаружением мутаций в гене TDP-43, встречающихся у 3% пациентов с семейной формой БАС [36, 37]. Учитывая роль TDP-43 в процессинге, транспортировке и сплайсинге РНК, это предполагает, что измененный метаболизм РНК участвует в патогенезе болезни у большинства пациентов с БАС [38, 39]. Кроме патологии, связанной с дисфункцией белка TDP-43, при БАС были обнаружены также мутации в гене другого ДНК/РНК-связывающего белка — FUS (Fused in sarcoma). FUS и TDP-43 имеют сходную доменную структуру и выполняют в клетке аналогичные функции — участвуют в регуляции процессинга и транспорта мРНК [39—42]. Помимо связи с нуклеиновой кислотой, FUS ассоциируется как с общими, так и с более специализированными белковыми факторами, которые влияют на инициирование транскрипции. FUS взаимодействует с несколькими ядерными рецепторами и ген-специфическими факторами транскрипции Spi-1/PU.1 и NF-κB. Он также может влиять на инициирование транскрипции и селекцию промотора путем взаимодействия с РНК-полимеразой II и комплексом TFIID [43—45]. Кроме того, в отличие от TDP-43 агрегаты FUS обнаруживаются только у пациентов, несущих мутации FUS, и не являются основным патологическим признаком других пациентов с семейной или спорадической формами БАС, указывая на то, что в отличие от TDP-43 вклад FUS в БАС может быть ограничен небольшим подмножеством пациентов с БАС. Тем не менее предложены модели БАС на животных с мутациями в генах этого белка, так называемые FUS протеинопатии [46, 47].

В Институте физиологически активных веществ РАН совместно с Институтом биологии гена РАН была создана и охарактеризована линия трансгенных мышей FUS, воспроизводящая внутриклеточные FUS-положительные накопления в нервных тканях, характерные для пациентов с БАС. Агрегаты FUS белка имеют плотную структуру, а сам белок лишен участка ядерной локализации. Данный вид FUS протеинопатии приводит к повреждению мотонейронов, а также нейровоспалительной реакции и снижению численности тел мотонейронов. Такая клиническая картина характеризуется относительно ранней манифестацией заболевания (2,5—4,5 мес) и быстрым летальным исходом (в течение нескольких дней с момента манифестации) [46].

Для моделирования болезни человека необходимо создавать трансгенные животные модели, отражающие конкретные фенотипы болезни БАС. На данный момент существует менее десяти моделей, воспроизводящих фенотипические признаки патологии БАС у людей. Однако, учитывая тот факт, что мутантный SOD1, по-видимому, имеет важное значение, для развития заболевания менее чем у 2% всех случаев БАС, а большинство случаев семейной формы БАС, по-видимому, определяется изменениями в метаболизме РНК [46], в последнее время большее внимание стало уделяться созданию новых моделей. Например, получило развитие создание моделей трансгенных грызунов с мутациями участка C9orf72, связанного с БАС [47, 48].

Разработка новых моделей грызунов с вновь открытыми генами

За последние 10 лет наблюдался всплеск идентификации генов, связанных с БАС. Мутации в большинстве генов, таких как UBQLN2, p62, VCP, Profilin1, Matrin 3 и т.д., редко наблюдаются при наследственной форме БАС. Некоторые из этих генов, такие как UBQLN2 и p62, могут быть вовлечены в патогенез спорадической формы БАС, поскольку часто присутствуют в тканях ЦНС у таких пациентов [49]. Мутации в VCP участвуют в патогенезе БАС, лобно-височной деменции, а также болезни Педжета [50]. Создаются новые модели животных с использованием вновь открытых генов. К настоящему времени получены модели грызунов, экспрессирующие мутантный VCP [51, 52], которые проявляют признаки болезни Педжета, сопровождающейся прогрессирующей мышечной слабостью и значительным накоплением цитоплазматического TDP-43 в нейронах головного мозга и моторных нейронах спинного мозга. Комбинирование в исследованиях как новых моделей БАС с использованием грызунов, так и iPS-клеток, с признаками, специфичными для пациентов, позволит прийти к лучшему пониманию патогенеза БАС и направить поиск препаратов для лечения этого нейродегенеративного заболевания.

Метаболизм липидов при развитии БАС

Липиды играют исключительно важную роль в ЦНС. Они выполняют структурную функцию, являясь основными компонентами клеточных мембран, служат источником энергии, участвуют в межклеточной коммуникации и передаче клеточных сигналов. Значимость липидов в биологических системах подчеркивается тем, что 5% генов человека отвечает за синтез липидов [19]. В мозге широко представлены все классы липидов [20], и за исключением жировой ткани мозг является органом с самым высоким содержанием липидов у человека и животных [21]. Нарушение липидного баланса оказывает негативное влияние на структурные и физиологические свойства мозга, функции нейронов и нейроглии, включая мембранный транспорт и контроль над активностью ферментов. Разрушение клеточной мембраны является характерной чертой нейродегенерации, возникающей при хронических заболеваниях ЦНС.

Различные нарушения липидного метаболизма характерны как для спорадической, так и для наследственной формы БАС. Наиболее часто наблюдаемые из них — дис- или гиперлипидемия, окислительный стресс [16, 53, 54]. Одним из характерных признаков БАС, наблюдаемым приблизительно у 2/3 пациентов с БАС, является снижение веса вследствие гиперметаболизма, который приводит к увеличению потребляемой организмом энергии и, поскольку одним из основных энергетических источников являются липиды, непосредственно связан с липидным метаболизмом. Регуляторная роль липидов как вторичных мессенджеров выявляется при исследовании воспалительных процессов при БАС, которые сопровождаются активацией микроглии, потерей нейромышечных соединений и последующей дегенерацией мотонейронов. При этом наблюдается повышенное содержание нейротоксичных молекул, таких как цитокины, оказывающих негативное влияние на процессы синтеза белков и липидов, в которых активное участие принимают вторичные мессенджеры липидной природы. Таким образом, исследование липидов при БАС может предложить новые подходы в изучении механизмов, отвечающих за процессы нейродегенерации, воспаления, окислительного стресса, проведение клеточного сигнала, изменения структуры мембран, а также повлиять на развитие новых методов диагностики и таргетной терапии БАС.

Гиперлипидемия при БАС

Нарушения липидного баланса в крови пациентов с БАС проявляются в форме как дислипидемии, так и гиперлипидемии [53]. Причем, как показано во многих исследованиях, гиперлипидемия, развивающаяся у больных БАС, коррелирует с увеличением продолжительности их жизни. Например, в работе L. Dupuis и соавт. [54] двукратное повышение содержания общих липидов в крови пациентов БАС коррелировало с увеличением продолжительности жизни на 12 мес. Также в исследованиях пациентов с БАС показано, что повышенное содержание триглицеридов сыворотки крови коррелирует с более длительной продолжительностью жизни [55].

В настоящее время проводятся многочисленные исследования по поиску липидных биомаркеров БАС. В качестве потенциального показателя состояния организма и/или прогнозирования течения заболевания и продолжительности жизни больных БАС рассматривается комплекс липидного профиля в плазме крови пациентов с БАС (концентрация триглицеридов, холестерина, липопротеидов низкой плотности (ЛПНП), липопротеидов высокой плотности (ЛПВП)) [54—57]. Однако ряд исследователей указывают на то, что большинство этих показателей не имеет существенных различий у больных по сравнению со здоровыми и не является достоверными признаками для прогноза БАС. Достаточно убедительны исследования (число исследуемых пациентов около 500—600), где не обнаружено достоверных отличий в липидном профиле сыворотки крови по уровню холестерина, триглицеридов, ЛПНП и ЛПВП [57]. Кроме того, не обнаружено связи между липидным профилем и продолжительностью жизни больных БАС [55].

Роль полиненасыщенных жирных кислот в развивающихся протеинопатиях

Жирные кислоты, свободные или входящие в состав триглицеридов и фосфолипидов, играют важную роль в организме. Они являются источником энергии и субстратом ПОЛ, разрушаясь с образованием гидрофобных радикалов при взаимодействии с активными формами кислорода. Наиболее пристальное внимание уделяется изучению полиненасыщенных жирных кислот (ПНЖК), которые, являясь структурными компонентами фосфолипидов, оказывают влияние на проницаемость и текучесть мембран, активность мембраносвязанных ферментов и транспортных белков. Кроме того, ПНЖК являются субстратом для синтеза провоспалительных медиаторов, в том числе при патогенезе БАС, эйкозаноидов (простагландинов, простациклинов, тромбоксанов и лейкотриенов). Некоторые исследователи предполагают, что состав жирных кислот общих липидов в крови пациентов может отражать патологическое состояние при БАС. Было показано, что содержание пальмитолеата (16:1) и олеата (18:1) значительно повышено относительно контроля, причем соотношение 16:1/16:0 коррелирует с показателями функциональной шкалы при БАС (ALSFRS-R), исходя из этого соотношение 16:1/16:0 предлагают использовать в качестве независимого прогностического фактора [58].

Особую роль в клетках мозга играют длинноцепочечные ПНЖК. При их непосредственном участии осуществляются регуляция взаимодействия нервных и глиальных клеток, стимуляция синаптогенеза, взаимодействие с нейротрансмиттерами и др. [59]. Биологическая роль ПНЖК в мозге зависит как от длины углеродной цепи, так и от расположения двойных связей [60].

Линолевая и альфа-линоленовая кислоты относятся к незаменимым, поступая в организм с пищей. Проникая через гематоэнцефалический барьер (ГЭБ), альфа-линоленовая кислота может понижать скорость ПОЛ посредством соединения с транскрипционным фактором NF-κB, препятствуя связанному с глутаматом эксайтотоксическому разрушению и окислительному стрессу, предотвращая таким образом гибель нейронов. Нейропротекторные свойства альфа-линоленовой кислоты также проявляются в пролонгировании выживаемости нейронов через понижение иммунореактивности проапоптических протеинов. Кроме того, альфа-линоленовая кислота служит метаболическим предшественником эйкозопентаноевой и дексагексагеновой кислот. При БАС было показано, что альфа-линоленовая кислота также оказывает положительный эффект, снижая риск заболевания [60].

Докозагексаеновая кислота (омега-3 ПНЖК) является одним из ключевых липидов в гомеостазе нервной системы. Было показано, что при спорадической форме БАС специфически меняется синтез докозагексаеновой кислоты, а эксайтотоксичность совместно с окислительным стрессом приводит к повышению уровня докозагексаеновой кислоты и повышенной экспрессии ферментов ее синтеза. Также показана связь метаболизма докозагексаеновой кислоты с агрегацией белка TDP-43, одного из основных патогенетических факторов при БАС [61]. Кроме того, докозагексаеновая кислота служит предшественником нейропротектора резолвина D1, который предлагают использовать при лечении БАС. Механизм действия резолвина Д1 основан на его роли медиатора при ингибировании синтеза провоспалительных цитокинов IL-6 и TNF-α [62].

При заболевании БАС большую роль играет еще один медиатор липидной природы — арахидоновая кислота, которая может быть метаболизирована либо ферментом простагландин-эндоперокси-N-синтазой, либо липооксигеназой, в зависимости от чего становится предшественником про- или противовоспалительных компонентов иммунной системы, таких как простагландины, лейкотриены, и др. Активация ферментов арахидонового цикла отмечена при различных нейродегенеративных заболеваниях, в том числе при БАС (в спинном мозге модельных животных, и в спинномозговой жидкости пациентов с БАС), что соответствует повышенному содержанию простагландинов [63, 64].

Эйкозопентаеновая кислота, метаболизм которой связан с арахидоновой кислотой, служит источником эйкозаноидов. В числе омега-3 жирных кислот эйкозопентаеновая кислота оказывает нейропротективное действие. При БАС была показана важная роль эйкозопентаеновой кислоты на пресимптоматической стадии развития SOD1-трансгенных мышей — значительное снижение активации микроглии и астроцитов [65].

Кроме этих достаточно хорошо известных полиненасыщенных жирных кислот и их функций, недавно обнаружены новые производные ПНЖК: соединения полиненасыщенных жирных кислот с оксидом азота (нитроалкены, NO2-жирные кислоты), обладающие свойствами нейропротекторов. NO2-жирные кислоты обнаружены в плазме крови, клеточных мембранах и тканях. Они способны влиять на воспалительный процесс, снижая уровень провоспалительных медиаторов посредством ингибирования ферментов, оказывая защитный эффект и предотвращая гибель мотонейронов при БАС.

NO2-жирные кислоты, являясь вторичными мессенджерами внутриклеточной сигнализации, запускают сигнальный каскад посредством ковалентных обратимых посттранскрипционных модификаций нуклеофильных аминокислот, воздействуя таким образом на регуляцию процессов транскрипции белков и ферментов. Механизм проведения внутриклеточного сигнала NO2-жирных кислот зависит от их распределения и расположения в гидрофильном и гидрофобном окружении, этерификации и других свойств. NO2-арахидоновая и NO2-олеиновая кислоты включены в сигналинг активации транскрипционного фактора Nrf2 — от англ. «Nuclear factor-erythroid 2-related factor 2», действие которого понижает токсичность активированных астроцитов по отношению к мотонейронам [66]. Один из наиболее изучаемых в настоящее время нитроалкенов — нитроолеиновая кислота. Показано, что ее противовоспалительные свойства основаны на способности проникать через ГЭБ и включают снижение уровня простагландинов и гидроксиэйкозатриеновой кислоты в головном мозге, а также уменьшение астроглиоза в спинном мозге животных при моделировании БАС (SOD1-мыши) [67, 68].

ПНЖК, диета и питание. Большинство ПНЖК может синтезироваться в клетках животных и человека, однако подавляющее их количество поступает в организм с пищей. Дефицит ПНЖК в питании приводит к различного рода нарушениям, начиная от изменения жирнокислотного состава мембран нервных клеток и заканчивая неврологическими и когнитивными нарушениями. С другой стороны, показано, что ПНЖК, поступающие в организм с пищей, могут проникать через ГЭБ, встраиваться в мембраны клеток головного мозга и модулировать окислительный стресс, воспалительные процессы, в том числе выброс цитокинов, т.е. именно те механизмы, которые характерны для БАС. Проводились исследования, в которых изучалось влияние повышенного содержания ПНЖК в диете пациентов с БАС и на животных моделях. Групповые длительные повторные обследования (1 002 082 человек) показали, что включение ПНЖК, а именно альфа-линоленовой кислоты, в рацион существенно снижает риск БАС [60, 69].

Результаты исследования влияния различных рационов на течение БАС показали позитивный эффект при назначении диеты, насыщенной кетонами (D-β-3 гидроксибутират). D-β-3 гидроксибутират, проникая через ГЭБ, метаболизируется в митохондриях клеток мозга в ацетоацетат и далее в ацетил-КоА, служа, таким образом, энергетическим субстратом для метаболизма нервных клеток. Кетоновая диета, уже известная нейропротекторными свойствами при некоторых нейродегенеративных заболеваниях (болезнь Паркинсона), а также при эпилепсии, улучшает моторные функции и выживаемость трансгенных SOD-мышей. Одна из модификаций кетоновой диеты, диета, содержащая среднецепочечные (от 6 до 12 углеродов) триглицериды, способствовала значительному снижению прогрессирования слабости и увеличению продолжительности жизни БАС-модельных животных [70].

Триглицериды

Одним из факторов, способствующих выживанию нейронов при БАС, называют повышенное содержание триглицеридов в плазме крови. Результаты исследования (413 больных БАС и 400 человек контрольной группы) демонстрируют, что пациенты с повышенным содержанием триглицеридов имели большую продолжительность жизни [55]. В некоторых исследованиях обнаруживают гендерные различия при БАС: уровень триглицеридов в специфической липопротеиновой фракции ЛПВП коррелировал с высокой выживаемостью у женщин, но не у мужчин [71]. Безусловно, как и отмечают многие исследователи, содержание триглицеридов в значительной степени отражает уровень питания пациента, который в свою очередь может оказывать влияние на продолжительность жизни при БАС [72]. Кроме того, в цереброспинальной жидкости (ЦСЖ) пациентов с БАС обнаружено пониженное содержание длинноцепочечных триглицеридов (16:1/18:1/18:2) [72].

Фосфолипиды

Фосфолипиды составляют около 50% от общего количества липидов, входящих в мембраны, и около 45% от общей сухой массы мозга. Фосфолипиды играют важнейшую роль в метаболизме клеточных систем нервных клеток, они являются основными структурными компонентами внешних и внутренних мембран клеток, влияя на текучесть мембран и активность мембраносвязанных белков, кроме того, фосфолипиды участвуют в передаче клеточного сигнала, являясь источником вторичных мессенджеров. Развитие липидомики в последние десятилетия в первую очередь связано с исследованиями роли фосфолипидов в нормальной деятельности мозга и при различных заболеваниях, в том числе нейродегенеративных. Показано, что фосфолипиды задействованы в ключевых процессах при болезни Альцгеймера, болезни Паркинсона, рассеянном склерозе [73, 74]. Однако исследований функции фосфолипидов в патологии БАС на данный момент исключительно мало, на данный момент существует всего лишь несколько работ в этом направлении. Исследования фосфолипидного профиля ЦСЖ при БАС у пациентов и модельных животных показали, что при БАС специфически отличались от контроля уровни определенных форм фосфолипидов с длинноцепочечными остатками жирных кислот: фосфатидилхолин (20:4) и сфингомиелин (22:0) [73]. Подобные результаты наблюдались и в мозге трансгенных мышей: фосфатидилхолин (36:2), фосфатидилхолин (36:4), фосфатидилхолин (40:6) были значительно выше, чем у контрольных. Разница в содержании фосфатидилхолинов между пациентами БАС и контролем, так же, как и между трансгенной БАС-моделью и контролем, демонстрирует значительное вовлечение фосфатидилхолинов, особенно фосфатидилхолина (36:4), в патологию БАС.

Исследователи предполагают, что повышенная концентрация фосфатидилхолинов, особенно фосфатидилхолина (16:0/20:4), может индуцировать повышенную активность фосфолипазы А2, вследствие чего усиливается высвобождение липидных медиаторов, таких как эйкозаноиды, что ведет к стимуляции воспалительных процессов при БАС. Точно так же высвобождение арахидоновой кислоты приводит к последующему синтезу простагландинов и перекисному окислению липидов, что характерно для нейродегенеративных процессов. Идентификация жирнокислотной цепи 22:6 в доминирующих при БАС фосфолипидах может соотноситься с докозагексаеновой кислотой, включенной в процессы стабилизации нейрональных мембран, передачи сигналов, дифференциации нейронов, нейрогенеза и др. Тогда как некоторые исследователи находят взаимосвязь между потерей мотонейронов в спинном мозге при БАС модельных мышей и снижением фосфатидилхолина (диацил-16:0/22:6), другие наблюдают повышенное содержание докозагексаеновой кислоты во фронтальной коре головного мозга пациентов с БАС [73, 75].

Другой группой исследователей проводилось изучение содержания фосфолипидов на модели БАС. Объектом исследования были выбраны различные отделы спинного мозга трансгенных SOD-мышей на разных сроках развития патологии: на пресимптоматической, симптоматической и постмортальной стадиях. Эти исследования показали значительное снижение уровня фосфатидилхолинов, содержащих докозагексаеновую кислоту: фосфатидилхолин (диацил-16:0/22:6), фосфатидилхолин (диацил-18:0/22:6) и фосфатидилхолин (18:1/22:6) на терминальной стадии жизни животных, которая происходила на фоне потери нейронов. Содержание другого молекулярного вида фосфатидилхолина (диацил-16:0/16:0) фактически не менялось в модели и в контроле. Исследователи делают вывод, что на терминальной стадии патологии снижение докозагексаеновая кислота-содержащих фосфатидилхолинов, но не других фосфатидилхолинов, может отражать потерю нейронов передних рогов спинного мозга [75].

Холестерин

Известно, что холестерин играет важную роль в структуре мембраны, в том числе в клетках мозга, где сосредоточено до 25% всего холестерина. Большей (до 70% от общего содержания в мозге) частью холестерин сосредоточен в миелиновой оболочке, где его основная функция заключается в стабилизации мембраны и увеличении ее жесткости, что способствует проведению электрического импульса. Значительно меньше холестерина содержится в плазматических мембранах нейронов (до 10%) и глии (до 20%) [76]. Для нейронов характерна высокая концентрация холестерина в синаптических мембранах, что способствует осуществлению нейропередачи, стабилизации клеточного контакта. Важно отметить, что синтез холестерина в мозге взрослого организма осуществляется большей частью не в нейронах, а в глиальных клетках. Холестерин синтезируется в астроцитах, образует липопротеиновую частицу с АроЕ, которая посредством эндосом секретируется во внешнюю среду. Комплекс холестерина с АроЕ захватывается с помощью рецепторов нейрональной мембраны и включается в метаболизм нервной клетки [77].

Кроме холестерина, в организме большую роль играют его метаболиты — оксистеролы. Один их них, 24-гидроксихолестерин, служит для выведения холестерина из мозга, но при этом является еще и вторичным мессенджером: активирует ядерные рецепторы в астроцитах и нейронах, что ведет к повышению экспрессии белков холестеринового метаболизма [77, 78]. Другой оксистерол, 27-гидроксихолестерин, интенсивно образуется при различных патологиях, в том числе при окислительном стрессе. При этом 27-гидроксихолестерин может проникать в мозг через ГЭБ и накапливаться в мозге, увеличивая риск нейродегенерации [79]. 25-гидроксихолестерин участвует в иммунном ответе, его концентрация может повышаться при нейродегенеративных заболеваниях.

Достаточно широко исследуется значение холестерина и его метаболитов при различных патологиях ЦНС. Однако роль холестерина при БАС пока не может считаться раскрытой, скорее в исследованиях наблюдается неоднородная картина. Ряд исследователей [80] обнаружили положительную корреляцию между повышенным содержанием холестерина в плазме крови и выживаемостью при БАС. У 73% пациентов с БАС (в группе из 512 добровольцев) наблюдалась гиперхолестеринемия (повышенное содержание холестерина), которая статистически достоверно положительно влияла на выживаемость пациентов с БАС [56]. Также высокое содержание в плазме крови холестерина на фоне повышенного содержания триглицеридов оказывало значительный эффект на выживаемость пациентов [72]. Однако при дислипидемии не было обнаружено какой-либо корреляции между развитием БАС и содержанием триглицеридов и холестерина, ассоциированного с ЛПВП. Показано, что содержание общего холестерина и холестерина, входящего в ЛПВП, четко коррелировало с риском БАС [53]. Возможно, отличия зависят от характера протекания заболевания: при гиперлипидемии повышенное содержание триглицеридов и холестерина может служить положительным фактором, при дислипидемии — фактором риска.

Метаболиты холестерина при БАС

Интересно, что ген, кодирующий один из ферментов холестеринового обмена, стерол-27-гидролазу (CYP27A1), идентифицирован в качестве возможного кандидата гена, ассоциированного с БАС [81]. Опубликовано несколько работ, связанных с выявлением роли мембранного холестерина в механизмах БАС. Исследования на SOD1-трансгенных мышах показали влияние 24-гидроксихолестерина на синаптическую передачу, а именно то, что 24-гидроксихолестерин способен подавлять экзоцитотоз при высвобождении нейротрансмиттеров посредством сигнального пути, опосредованного NO-липидными рафтами в нейромышечных синапсах у SOD1-трансгенных мышей [78]. Однако, как признают и сами авторы, необходимы дальнейшие исследования в этой области [81, 82].

Заключение

В обзоре представлены наиболее популярные модели, используемые для изучения механизмов БАС. Среди них акцент сделан на моделях БАС с использованием различных видов грызунов, включая мышей и крыс с экспрессией мутантных изоформ SOD1. Наиболее популярными стали мышиные модели, сверхэкспрессирующие человеческие мутанты SOD1. Также были разработаны мышиные модели, экспрессирующие множественные копии мутанта мышиного SOD1 с ранним смертельным заболеванием моторных нейронов. Кроме мышиных моделей, были созданы линии трансгенных крыс со сверхэкспрессией SOD1, оказавшиеся особенно полезными для оценки терапевтических исследований в связи с преимуществами в размере животных, особенно при введении терапевтических препаратов, например непрерывной интраспинальной доставке терапевтических средств.

В связи с тем, что у большинства пациентов с БАС патология была вызвана нарушениями в метаболизме РНК, были созданы модели с мутациями в белках, обеспечивающих метаболизм РНК, например TDP-43 и FUS. Белки FUS и TDP-43 имеют сходную доменную структуру и выполняют в клетке аналогичные функции — участвуют в регуляции процессинга и транспорта мРНК [39—42]. В Институте физиологически активных веществ РАН совместно с Институтом биологии гена РАН была создана и охарактеризована линия трансгенных мышей FUS, воспроизводящая внутриклеточные FUS-положительные накопления в нервных тканях, характерные для пациентов с БАС.

Представленные в настоящем обзоре многочисленные исследования как на различных моделях БАС, так и в клинике демонстрируют резко выраженную дисрегуляцию метаболизма различных классов липидов. Значительные нарушения в содержании и синтезе липидов обнаружены на разных стадиях развития БАС. Некоторыми исследователями определено, что состав жирных кислот общих липидов в крови пациентов может отражать патологическое состояние при БАС. На основании изменений содержания некоторых жирных кислот в процессе развития БАС, а именно пальмитолеата (16:1) и олеата (18:1), которые коррелируют с показателями функциональной шкалы при БАС (ALSFRS-R), предлагается использование изменения соотношения этих кислот в качестве независимого прогностического фактора. Кроме изменений в составе жирных кислот, обнаружено различие в содержании фосфолипидов между пациентами с БАС и контролем, так же как и между трансгенной БАС-моделью и контролем. Таким образом, детальное изучение изменений в метаболизме липидов при БАС позволит более четко понять патологические аспекты БАС и создать новые лекарственные средства для лечения данной нейродегенеративной патологии.

Работа выполнена в рамках проекта №19-13-00378 Российского научного фонда, Государственного задания ИФАВ РАН (ГЗ «Поиск и исследование механизмов действия нейропротекторов и стимуляторов когнитивнвых функций» №0090-2019-0005) и Государственного задания ИБХФ РАН «Исследования свойств липидов в нейропатологиях (тема №44.4, Гос. Регистрации 01201253310).

Авторы заявляют об отсутствии конфликта интересов.

Литература / References:

  1. Van Den Bosch L. Genetic rodent models of amyotrophic lateral sclerosis. J Biomed Biotechnol. 2011;348765. https://doi.org/10.1155/2011/348765
  2. Robberecht W, Sapp P, Viaene MK, Rosen D, McKenna-Yasek D, Haines J, Horvitz R, Theys P, Brown R Jr. Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis. J Neurochem. 1994;62(1):384-387.  https://doi.org/10.1046/j.1471-4159.1994.62010384.x
  3. Koppers M, van Blitterswijk MM, Vlam L, Rowicka PA, van Vught PW, Groen EJ, Spliet WG, Engelen-Lee J, Schelhaas HJ, de Visser M, van der Kooi AJ, van der Pol WL, Pasterkamp RJ, Veldink JH, van den Berg LH. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33:837.  https://doi.org/10.1016/j.neurobiolaging.2011.10.006
  4. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465:223-226.  https://doi.org/10.1038/nature08971
  5. Daoud H, Suhail H, Szuto A, Camu W, Salachas F, Meininger V, Bouchard JP, Dupré N, Dion PA, Rouleau GA. UBQLN2 mutations are rare in French and French-Canadian amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33(2):2230-2233. https://doi.org/10.1016/j.neurobiolaging.2012.03.015
  6. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245-256.  https://doi.org/10.1016/j.neuron.2011.09.011
  7. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427-434.  https://doi.org/10.1002/ana.21147
  8. Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205-1208. https://doi.org/10.1126/science.1166066
  9. Deng HX, Zhai H, Bigio EH, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T. FUS-immunoreactive inclusions are a common feature in sporadic and nonSOD1 familial amyotrophic lateral sclerosis. Ann Neurol. 2010;67:739-748.  https://doi.org/10.1002/ana.22051
  10. Daoud H, Dobrzeniecka S, Camu W, Meininger V, Dupré N, Dion PA, Rouleau GA. Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging. 2013;34(4):1311.e1-e2.  https://doi.org/10.1016/j.neurobiolaging.2012.09.001
  11. Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004;63(4):724-726.  https://doi.org/10.1212/01.WNL.0000134608.83927.B1
  12. Rademakers R, van Blitterswijk M. Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron. 2014;84(2):241-243.  https://doi.org/10.1016/j.neuron.2014.10.002
  13. Ghasemi M, Brown RH. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2017;7:a024125. https://doi.org/10.1101/cshperspect.a024125
  14. Van Damme P, Dewil M, Robberecht W, Van Den Bosch L. Excitotoxicity and Amyotrophic Lateral Sclerosis. Neurodegener Dis. 2005;2(3-4):147-159.  https://doi.org/10.1159/000089620
  15. Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2010;1802(1):45-51.  https://doi.org/10.1016/j.bbadis.2009.08.012
  16. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577-3587. https://doi.org/10.1172/JCI90609
  17. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;14(3):CD001447. https://doi.org/10.1002/14651858.CD001447.pub3
  18. Bhandari R, Kuhad A, Kuhad A. Edaravone: a new hope for deadly amyotrophic lateral sclerosis. Drugs Today (Barc). 2018;54(6):349-360.  https://doi.org/10.1358/dot.2018.54.6.2828189
  19. Peters OM, Ghasemi M, Brown RH Jr. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125(5):1767-1779. https://doi.org/10.1172/jci71601
  20. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995;92(3):689-693.  https://doi.org/10.1073/pnas.92.3.689
  21. Bowling AC, Schulz JB, Brown RH Jr, Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem. 1993;61(6):2322-2325. https://doi.org/10.1111/j.1471-4159.1993.tb07478.x
  22. McCombe PA, Henderson RD. The Role of Immune and Inflammatory Mechanisms in ALS. Curr Mol Med. 2011;11(3):246-254.  https://doi.org/10.2174/1566211213754895240
  23. D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med. 2013;65:509-527.  https://doi.org/10.1016/j.freeradbiomed.2013.06.029
  24. Nagase M, Yamamoto Y, Miyazaki Y, Yoshino H. Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration. Redox Rep. 2016;21(3):104-112.  https://doi.org/10.1179/1351000215Y.0000000026
  25. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):1389-1392. https://doi.org/10.1126/science.1123511
  26. Philips T, Rothstein JD. Glial cells in amyotrophic lateral sclerosis. Exp Neurol. 2014;262 Pt B:111-120.  https://doi.org/10.1016/j.expneurol.2014.05.015
  27. Ozdinler PH, Benn S, Yamamoto TH, Güzel M, Brown RH Jr, Macklis JD. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G9³A transgenic ALS mice. J Neurosci. 2011;31(11):4166-4177. https://doi.org/10.1523/JNEUROSCI.4184-10.2011
  28. Hatzipetros T, Bogdanik LP, Tassinari VR, Kidd JD, Moreno AJ, Davis C, Osborne M, Austin A, Vieira FG, Lutz C, Perrin S. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res. 2014;1584:59-72.  https://doi.org/10.1016/j.brainres.2013.10.013
  29. Joyce PI, Fratta P, Fisher EM, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome. 2011;22(7-8):420-448.  https://doi.org/10.1007/s00335-011-9339-1
  30. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci. 2013;16(5):571-579.  https://doi.org/10.1038/nn.3357
  31. Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model ofamyotrophic lateral sclerosis. Neurobiology of disease. 2002;10:268-278.  https://doi.org/10.1006/nbdi.2002.0487
  32. Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport. 2002;13:1067-1070. https://doi.org/10.1097/00001756-200206120-00018
  33. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, Hersmus N, Küsters B, Van Den Bosch L, Van Damme P, Richardson WD, Robberecht W. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain. 2013;136(Pt 2):471-482.  https://doi.org/10.1093/brain/aws339
  34. Kwong LK, Neumann M, Sampathu DM, Lee VM, Trojanowski JQ. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007;114(1):63-70.  https://doi.org/10.1007/s00401-007-0226-5
  35. Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, Stewart H, Kelley BJ, Kuntz K, Crook RJ, Sreedharan J, Vance C, Sorenson E, Lippa C, Bigio EH, Geschwind DH, Knopman DS, Mitsumoto H, Petersen RC, Cashman NR, Hutton M, Shaw CE, Boylan KB, Boeve B, Graff-Radford NR, Wszolek ZK, Caselli RJ, Dickson DW, Mackenzie IR, Petrucelli L, Rademakers R. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4(9):e1000193. https://doi.org/10.1371/journal.pgen.1000193
  36. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668-1672. https://doi.org/10.1126/science.1154584
  37. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C, Wancewicz E, Kim AS, Watt A, Freier S, Hicks GG, Donohue JP, Shiue L, Bennett CF, Ravits J, Cleveland DW, Yeo GW. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488-1497. https://doi.org/10.1038/nn.3230
  38. Polymenidou M, Lagier-Tourenne C, Hutt KR, Bennett CF, Cleveland DW, Yeo GW. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res. 2012;1462:3-15.  https://doi.org/10.1016/j.brainres.2012.02.059
  39. Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011;9(4):e1000614. https://doi.org/10.1371/journal.pbio.1000614
  40. Thompson VF, Victor RA, Morera AA, Moinpour M, Liu MN, Kisiel CC, Pickrel K, Springhower CE, Schwartz J. Transcription-dependent formation of nuclear granules containing FUS and RNA Pol II. Biochemistry. 2018;57(51):7021-7032. https://doi.org/10.1021/acs.biochem.8b01097
  41. De Santis R, Santini L, Colantoni A, Peruzzi G, de Turris V, Alfano V, Bozzoni I, Rosa A. FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Rep. 2017;9:1450-1462. https://doi.org/10.1016/j.stemcr.2017.09.004
  42. Alexander EJ, Ghanbari Niaki A, Zhang T, Sarkar J, Liu Y, Nirujogi RS, Pandey A, Myong S, Wang J. Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA. 2018;115(49):11485-11494. https://doi.org/10.1073/pnas.1811997115
  43. Wang H, Guo W, Mitra J, Hegde PM, Vandoorne T, Eckelmann BJ, Mitra S, Tomkinson AE, Van Den Bosch L, Hegde ML. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat Commun. 2018;9(1):3683. https://doi.org/10.1038/s41467-018-06111-6
  44. Delva L, Gallais I, Guillouf C, Denis N, Orvain C, Moreau-Gachelin F. Multiple functional domains of the oncoproteins Spi-1/PU.1 and TLS are involved in their opposite splicing effects in erythroleukemic cells. Oncogene. 2004;23(25):4389-4399. https://doi.org/10.1038/sj.onc.1207578
  45. Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M, Okamoto T. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem. 2001;276(16):13395-13401. https://doi.org/10.1074/jbc.m011176200
  46. Immanuel D, Zinszner H, Ron D. Association of SARFH (sarcoma-associated RNA-binding fly homolog) with regions of chromatin transcribed by RNA polymerase II. Mol Cell Biol. 1995;15(8):4562-4571. https://doi.org/10.1128/mcb.15.8.4562
  47. Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, Bachurin SO, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Skvortsova VI, Ling SC, Da Cruz S, Parone PA, Buchman VL, Ninkina NN. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem. 2013;288(35):25266-25274. https://doi.org/10.1074/jbc.M113.492017
  48. Robinson HK, Deykin AV, Bronovitsky EV, Ovchinnikov RK, Ustyugov AA, Shelkovnikova TA, Kukharsky MS, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Bachurin SO, Buchman VL, Ninkina NN. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):402-409.  https://doi.org/10.3109/21678421.2015.1040994
  49. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211-215.  https://doi.org/10.1038/nature10353
  50. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377-381.  https://doi.org/10.1038/ng1332
  51. Weihl CC, Miller SE, Hanson PI, Pestronk A. Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet. 2007;16(8):919-928.  https://doi.org/10.1093/hmg/ddm037
  52. Nalbandian A, Nguyen C, Katheria V, Llewellyn KJ, Badadani M, Caiozzo V, Kimonis VE. Exercise training reverses skeletal muscle atrophy in an experimental model of VCP disease. PLoS One. 2013;8(10):e76187. https://doi.org/10.1371/journal.pone.0076187
  53. Chen X, Yazdani S, Piehl F, Magnusson PKE, Fang F. Polygenic link between blood lipids and amyotrophic lateral sclerosis. Neurobiol Aging. 2018;67:202.e1-202.e6.  https://doi.org/10.1016/j.neurobiolaging.2018.03.022
  54. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008;70(13):1004-1009. https://doi.org/10.1212/01.wnl.0000285080.70324.27
  55. Huang R, Guo X, Chen X, Zheng Z, Wei Q, Cao B, Zeng Y, Shang H. The serum lipid profiles of amyotrophic lateral sclerosis patients: A study from south-west China and a meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):359-365.  https://doi.org/10.3109/21678421.2015.1047454
  56. Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ. Effect of lipid profile on prognosis in the patients with amyotrophic lateral sclerosis: Insights from the olesoxime clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(7-8):478-484.  https://doi.org/10.3109/21678421.2015.1062517
  57. Chiò A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R, Palmo A, Galletti R, Marinou K, Papetti L, Mora G. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology. 2009;73(20):1681-1685. https://doi.org/10.1212/wnl.0b013e3181c1df1e
  58. Henriques A, Blasco H, Fleury MC, Corcia P, Echaniz-Laguna A, Robelin L, Rudolf G, Lequeu T, Bergaentzle M, Gachet C, Pradat PF, Marchioni E, Andres CR, Tranchant C, Gonzalez De Aguilar JL, Loeffler JP. Blood Cell Palmitoleate-Palmitate Ratio Is an Independed Prognistic Factor for Amyotrophic Lateral Sclerosis. PLoS One. 2015;10(7):e0131512. https://doi.org/10.1371/journal.pone.0131512
  59. Боровик Т.Э., Грибакин С.Г., Скворцова В.А., Семенова Н.Н., Степанова Т.Н., Звонкова Н.Г. Длинноцепочечные полиненасыщенные жирные кислоты и их роль в детском питании. Обзор литературы. Вопросы современной педиатрии. 2012;11(4):21-28.  https://doi.org/10.15690/vsp.v11i4.355
  60. Fitzgerald KC, O’Reilly ÉJ, Falcone GJ, McCullough ML, Park Y, Kolonel LN, Ascherio A. Dietary ω-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol. 2014;71(9):1102-1110. https://doi.org/10.1001/jamaneurol.2014.1214
  61. Cacabelos D, Ayala V, Granado-Serrano AB, Jové M, Torres P, Boada J, Cabré R, Ramírez-Núñez O, Gonzalo H, Soler-Cantero A, Serrano JC, Bellmunt MJ, Romero MP, Motilva MJ, Nonaka T, Hasegawa M, Ferrer I, Pamplona R, Portero-Otín M. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiol Dis. 2016;88:148-160.  https://doi.org/10.1016/j.nbd.2016.01.007
  62. Liu G, Fiala M, Mizwicki MT, Sayre J, Magpantay L, Siani A, Mahanian M, Chattopadhyay M, La Cava A, Wiedau-Pazos M. Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1. Am J Neurodegener Dis. 2012;1(1):60-74. PMID: 22787561.
  63. Iłzecka J. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol Scand. 2003;108(2):125-129.  https://doi.org/10.1034/j.1600-0404.2003.00102.x
  64. Miyagishi H, Kosuge Y, Takano A, Endo M, Nango H, Yamagata-Murayama S, Hirose D, Kano R, Tanaka Y, Ishige K, Ito Y. Increased Expression of 15-Hydroxyprostaglandin Dehydrogenase in Spinal Astrocytes During Disease Progression in a Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol. 2017;37(3):445-452.  https://doi.org/10.1007/s10571-016-0377-9
  65. Yip PK, Pizzasegola C, Gladman S, Biggio ML, Marino M, Jayasinghe M, Ullah F, Dyall SC, Malaspina A, Bendotti C, Michael-Titus A. The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PLoS One. 2013;8(4):e61626. https://doi.org/10.1371/journal.pone.0061626
  66. Diaz-Amarilla P, Miquel E, Trostchansky A, Trias E, Ferreira AM, Freeman BA, Cassina P, Barbeito L, Vargas MR, Rubbo H. Electrophilic nitro-fatty acids prevent astrocyte-mediated toxicity to motor neurons in a cell model of familial amyotrophic lateral sclerosis via nuclear factor erythroid 2-related factor activation. Free Radic Biol Med. 2016;95:112-120.  https://doi.org/10.1016/j.freeradbiomed.2016.03.013
  67. Rubbo H. Nitro-fatty acids: novel anti-inflammatory lipid mediators. Braz J Med Biol Res. 2013;46(9):728-734.  https://doi.org/10.1590/1414-431X20133202
  68. Trostchansky A, Mastrogiovanni M, Miquel E, Rodríguez-Bottero S, Martínez-Palma L, Cassina P, Rubbo H. Profile of Arachidonic Acid-Derived Inflammatory Markers and Its Modulation by Nitro-Oleic Acid in an Inherited Model of Amyotrophic Lateral Scleros. Front Mol Neurosci. 2018;11:131.  https://doi.org/10.3389/fnmol.2018.00131
  69. Veldink JH, Kalmijn S, Groeneveld GJ, Wunderink W, Koster A, de Vries JH, van der Luyt J, Wokke JH, Van den Berg LH. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007;78(4):367-371.  https://doi.org/10.1136/jnnp.2005.083378
  70. Zhao W, Varghese M, Vempati P, Dzhun A, Cheng A, Wang J, Lange D, Bilski A, Faravelli I, Pasinetti GM. Caprylic Triglyceride as a Novel Therapeutic Approach to Effectively Improve the Performance and Attenuate the Symptoms Due to the Motor Neuron Loss in ALS Disease. PLoS One. 2012;7(11):e49191. https://doi.org/10.1371/journal.pone.0049191
  71. Wuolikainen A, Acimovic J, Lövgren-Sandblom A, Parini P, Andersen PM, Björkhem I. Cholesterol, Oxysterol, Triglyceride, and Coenzyme Q Homeostasis in ALS. Evidence against the Hypothesis That Elevated 27-Hydroxycholesterol. Is a Pathogenic Factor PLoS One. 2014;9(11):e113619. https://doi.org/10.1371/journal.pone.0113619
  72. Dorst J, Kühnlein P, Hendrich C, Kassubek J, Sperfeld AD, Ludolph AC Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol. 2011;258(4):613-617.  https://doi.org/10.1007/s00415-010-5805-z
  73. Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc’h P, Kouassi Nzoughet J, Lenaers G, Andres CR, Simard G, Corcia P, Reynier P. Lipidomics Reveals Cerebrospinal-Fluid Signatures of ALS. Sci Rep. 2017;7(1):17652. https://doi.org/10.1038/s41598-017-17389-9
  74. Алесенко АВ. Потенциальная роль сфинголипидов в нейропатогенезе болезни Альцгеймера. Биомедицинская химия. 2013;59(1):25-50.  https://doi.org/10.18097/pbmc20135901025
  75. Arima H, Omura T, Hayasaka T, Masaki N, Hanada M, Xu D, Banno T, Kobayashi K, Takeuchi H, Kadomatsu K, Matsuyama Y, Setou M. Reductions of docosahexaenoic acid-containing phosphatidylcholine levels in the anterior horn of an ALS mouse model. Neuroscience. 2015;297:127-136.  https://doi.org/10.1016/j.neuroscience.2015.03.060
  76. Sutedja NA, van der Schouw YT, Fischer K, Sizoo EM, Huisman MH, Veldink JH, Van den Berg LH. Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2011;82(6):638-642.  https://doi.org/10.1136/jnnp.2010.236752
  77. Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T. Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem. 2009;78:1017-1040. https://doi.org/10.1146/annurev.biochem.78.072407.103859
  78. Poirier J, Baccichet A, Dea D, Gauthier S. Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience. 1993;55(1):81-90.  https://doi.org/10.1016/0306-4522(93)90456-p
  79. Mukhutdinova KA, Kasimov MR, Giniatullin AR, Zakyrjanova GF, Petrov AM. 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1 (G93A) mice: A possible role of NO and lipid rafts. Mol Cell Neurosci. 2018;88:308-318.  https://doi.org/10.1016/j.mcn.2018.03.006
  80. Vejux A, Namsi T, Nury T, Moreau T, Lizard G. Biomarkers of amyotrophic lateral sclerosis: current status and interest of oxysterols. Front Mol Neurosci. 2018;11:12.  https://doi.org/10.3389/fnmol.2018.00012
  81. Diekstra FP, Saris, Christiaan GJ, Rheenen W, Franke L, Ritsert CJ, van Es MA, van Vught PWJ, Blauw HM, Groen EJN, Horvath S, Estrada K, Rivadeneira F, Hofman A, Uitterlinden AG, Robberecht W, Andersen PM, Melki J, Meininger V, Hardiman O, Landers JE, Brown RHJr, Shatunov A, Shaw CE, P. Leigh N, Al-Chalabi A,. Ophoff RA, van den Berg LH Veldink JH. Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS. PLoS One. 2012;7(4):e35333. https://doi.org/10.1371/journal.pone.0035333
  82. Antonini A, Caioli S, Saba L, Vindigni G, Biocca S, Canu N, Zona C. Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2018;1864(2):509-519.  https://doi.org/10.1016/j.bbadis.2017.11.008

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.