The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Byval'tsev V.A.

otdel neĭrokhirurgii i ortopedii Nauchnogo tsentra rekonstruktivnoĭ i vosstanovitel'noĭ khirurgii Sibirskogo otdeleniia RAMN;
NUZ Dorozhnaia klinicheskaia bol'nitsa OAO "RZhD", Irkutsk

Kalinin A.A.

NUZ Dorozhnaia klinicheskaia bol'nitsa OAO "RZhD", Irkutsk

Pestryakov Yu.Ya.

Krasnoyarsk Regional Clinical Hospital, Krasnoyarsk, Russia

Aliev M.A.

Irkutsk State Medical University, Krasnogo Vosstaniya Str., 1, Irkutsk, 664003, Russia

Dynamic fixation of the lumbar spine dynamic fixation of the lumbar spine

Authors:

Byval'tsev V.A., Kalinin A.A., Pestryakov Yu.Ya., Aliev M.A.

More about the authors

Read: 5342 times


To cite this article:

Byval'tsev VA, Kalinin AA, Pestryakov YuYa, Aliev MA. Dynamic fixation of the lumbar spine dynamic fixation of the lumbar spine. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;(2):43‑55. (In Russ.)
https://doi.org/10.17116/vto201902143

Recommended articles:
Biodegradable devi­ces for annu­lus fibrosus defect closure after lumbar discectomy. Piro­gov Russian Journal of Surgery. 2024;(12-2):95-100

References:

  1. Abakirov M.D., Kruglov I.A., Abdurakhmanov R.R. et al. Endoprosthetics of the intervertebral discs of the lumbar spine. Hirurgiya pozvonochnika. 2016;13(1):59-66. (in Russ.) https://doi.org/10.14531/ss2016.1.59-66.
  2. Byvaltsev V.A., Belykh E.G., Kalinin A.A., Sorokovikov V.A. Clinic, diagnosis and surgical treatment of hernias of intervertebral discs of the lumbosacral spine. Irkutsk: INCHT; 2016 (in Russ.)
  3. Byvaltsev V.A., Kalinin A.A., Shepelev V.V. Unstable forms of degenerative diseases of the vertebral motor segments of the lumbosacral spine: diagnosis and surgical treatment. Novosibirsk: Nauka; 2017 (in Russ.)
  4. Kaner T., Sasani M., Oktenoglu T. et al. Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study. Turk Neurosurg. 2009;19(4):319-326.
  5. Kaner T., Ozer A.F. Dynamic stabilization for challenging lumbar degenerative diseases of the spine: a review of the literature. Adv Orthop. 2013;2013:753470. https://doi.org/10.1155/2013/753470.
  6. Panjabi M.M. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003;13(4):371-379.
  7. Hu R.W., Jaglal S., Axcell T., Anderson G. A population based study of reoperations after back surgery. Spine (Phila Pa 1976). 1997;22(19):2265-2271.
  8. Byvaltsev V.A., Kalinin A.A., Okoneshnikova A.K. et al. Facet fixation in combination with interbody spondylodesis: comparative analysis and clinical experience of a new method of surgical treatment of patients with degenerative diseases of the lumbar spine. Vestnik RAMN. 2016; 71 (5): 375-383 (in Russ.) https://doi.org/10.15690/vramn738.
  9. Mummaneni P.V., Haid R.W., Rodts G.E. Lumbar interbody fusion: state-of-the-art technical advances. J Neurosurg. 2004;101(1):24-30. https://doi.org/10.3171/spi.2004.1.1.0024.
  10. Ozer A.F., Oktenoglu T., Egemen E. et al. Comparison of the rigid rod system with modular plate with the finite element analysis in short-segment posterior stabilization in the lower lumbar region. Turk Neurosurg. 2017;27(4):610-616. https://doi.org/10.5137/1019-5149.JTN.16203-15.1.
  11. Sengupta D., Mulholland R.C., Pimenta L. Prospective clinical study of dynamic stabilization with the DSS system in isolated activity related mechanical low back pain, with outcome at minimum 2-year follow-up. Spine J. 2006;6(5):147.
  12. Xia X.P., Chen H.L., Cheng H.B. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2013;38(7):597-608. https://doi.org/10.1097/BRS.0b013e318273a2ea.
  13. Gomleksiz C., Sasani M., Oktenoglu T., Ozer A.F. A short history of posterior dynamic stabilization. Adv Orthop. 2012;2012:629698. https://doi.org/10.1155/2012/ 629698.
  14. Khoueir P., Kim K.A., Wang M.Y. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.
  15. Chou D., Lau D., Skelly A., Ecker E. Dynamic stabilization versus fusion for treatment of degenerative spine conditions. Evid Based Spine Care J. 2011;2(3):33-42. https://doi.org/10.1055/s-0030-1267111.
  16. Byvaltsev V.A., Kalinin A.A., Pestryakov Yu.Ya. et al. Analysis of the results of the use of total arthroplasty of the intervertebral disc of the lumbosacral spine with a M6-L prosthesis: a multicenter study. Vestnik RAMN. 2017;72(5):393-402. (in Russ.) https://doi.org/10.15690/vramn782.
  17. Gamradt S.C., Wang J.C. Lumbar disc arthroplasty. Spine J. 2005;5(1):95-103. https://doi.org/10.1016/j.spinee.2004.09.006.
  18. Link H.D. History, design and biomechanics of the LINK SB Charite artificial disc. Arthroplasty of the Spine. Springer; 2004. https://doi.org/10.1007/s00586-002-0475-x.
  19. Zigler J.E., Delamarter R.B. Five-year results of the prospective, randomized, multicenter, Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential arthrodesis for the treatment of single-level degenerative disc disease. J Neurosurg Spine. 2012;17(6):493-501. https://doi.org/10.3171/2012.9.SPINE11498
  20. Mathews H.H., LeHuec J.-C., Friesem T. et al. Design rationale and biomechanics of Maverick Total Disc arthroplasty with early clinical results. Spine J. 2004;4(6):S268-S275. https://doi.org/10.1016/j.spinee.2004.07.017.
  21. Park C.K. Total disc replacement in lumbar degenerative disc diseases. J Korean Neurosurg Soc. 2015;58(5):401-411. https://doi.org/10.3340/jkns.2015.58.5.401.
  22. Vital J.M., Boissière L. Total disc replacement. Orthop Traumatol Surg Res. 2014;100:S1-S14. https://doi.org/10.1016/j.otsr.2013.06.018.
  23. Daftari T.K., Chinthakunta S.R., Ingalhalikar A. et al. Kinematics of a selectively constrained radiolucent anterior lumbar disc: comparisons to hybrid and circumferential fusion. Clin Biomech. (Bristol, Avon). 2012;27(8):759-765. https://doi.org/10.1016/j.clinbiomech.2012.05.010.
  24. Erkan S., Rivera Y., Wu C. et al. Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion. Spine J. 2009;9(10):830-835. https://doi.org/10.1016/j.spinee.2009.04.014.
  25. Hoff E.K., Strube P., Pumberger M. et al. ALIF and total disc replacement versus 2-level circumferential fusion with TLIF: a prospective, randomized, clinical and radiological trial. Eur Spine J. 2016;25(5):1558-1566. https://doi.org/10.1007/s00586-015-3852-y.
  26. Berg S., Gillberg-Aronsson N. Clinical outcomes after treatment with disc prostheses in three lumbar segments compared to one- or two segments. Int J Spine Surg. 2015;9:49. https://doi.org/10.14444/2049.
  27. Clavel P., Ungureanu G., Catalá I. et al. Health-related quality of life in patients undergoing lumbar total disc replacement: A comparison with the general population. Clin Neurol Neurosurg. 2017;160:119-124. https://doi.org/10.1016/j.clineuro.2017.07.007.
  28. Siepe C.J., Heider F., Wiechert K. et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J. 2014;14(8):1417-1431. https://doi.org/10.1016/j.spinee.2013.08.028.
  29. Tropiano P., Huang R.C., Girardi F.P. et al. Lumbar total disc replacement. Seven to eleven-year follow-up. J Bone Joint Surg Am. 2005;87(3):490-496. https://doi.org/10.2106/JBJS.C.01345.
  30. Park C.K., Ryu K.S., Jee W.H. Degenerative changes of discs and facet joints in lumbar total disc replacement using ProDisc II: minimum two-year follow-up. Spine (Phila Pa 1976). 2008;33(16):1755-1761. https://doi.org/10.1097/BRS.0b013e31817b8fed.
  31. Park C.K., Ryu K.S., Lee K.Y., Lee H.J. Clinical outcome of lumbar total disc replacement using ProDisc-L in degenerative disc disease: minimum 5-year follow-up results at a single institute. Spine (Phila Pa 1976). 2012;37(8):672-677. https://doi.org/10.1097/BRS.0b013e31822ecd85.
  32. Guyer R.D., McAfee P.C., Banco R.J. et al. Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J. 2009;9(5):374-386. https://doi.org/10.1016/j.spinee.2008.08.007.
  33. Van den Eerenbeemt K.D., Ostelo R.W., van Royen B.J. et al. Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J. 2010;9(8):1262-1280. https://doi.org/10.1007/s00586-010-1445-3.
  34. Mattei T.A., Beer J., Teles A.R. et al. Clinical outcomes of total disc replacement versus anterior lumbar interbody fusion for surgical treatment of lumbar degenerative disc disease. Global Spine J. 2017;7(5):452-459. https://doi.org/10.1177/2192568217712714.
  35. Helgeson M.D., Bevevino A.J., Hilibrand A.S. Update on the evidence for adjacent segment degeneration and disease. Spine J. 2013;13(3):342-351. https://doi.org/10.1016/j.spinee.2012.12.009.
  36. Zigler J.E., Glenn J., Delamarter R.B. Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. J Neurosurg Spine. 2012;17(6):504-511. https://doi.org/10.3171/2012.9.SPINE11717.
  37. Plais N., Thevenot X., Cogniet A. et al. Maverick total disc arthroplasty performs well at 10 years follow-up: a prospective study with HRQL and balance analysis. Eur Spine J. 2018;27(3):720-727. https://doi.org/10.1007/s00586-017-5065-z.
  38. Laugesen L.A., Paulsen R.T., Carreon L. et al. Patient-reported outcomes and revision rates at a mean follow-up of 10 years after lumbar total disc replacement. Spine (Phila Pa 1976). 2017;42(21):1657-1663. https://doi.org/10.1097/BRS.0000000000002174.
  39. Park S.J., Lee C.S., Chung S.S. et al. Long term outcomes following lumbar total disc replacement using ProDisc-II average 10-year follow-up at a single institute. Spine (Phila Pa 1976). 2016; 41 (11): 971-977. https://doi.org/10.1097/BRS.0000000000001527.
  40. Lu S.B., Hai Y., Kong C. et al. An 11-year minimum follow-up of the Charite III lumbar disc replacement for the treatment of symptomatic degenerative disc disease. Eur Spine J. 2015;24(9):2056-2064. https://doi.org/10.1007/s00586-015-3939-5.
  41. Guyer R.D., Pettine K., Roh J.S. et al. Five-year follow-up of a prospective, randomized trial comparing two lumbar total disc replacements. Spine (Phila Pa 1976). 2016;41(1):3-8. https://doi.org/10.1097/BRS.0000000000001168
  42. Yue J.J., Garcia R., Miller L.E. The activL(®) artificial disc: a next generation motion-preserving implant for chronic lumbar discogenic pain. Med Devices (Auckl). 2016;9:75-84. https://doi.org/10.2147/MDER.S102949.
  43. Malham G.M., Parker R.M. Early experience with lateral lumbar total disc replacement: Utility, complications and revision strategies. J Clin Neurosci. 2017;39:176-183. https://doi.org/10.1016/j.jocn.2017.01.033.
  44. Sasani M., Aydin A.L., Oktenoglu T. et al. The combined use of a posterior dynamic transpedicular stabilization system and a prosthetic disc nucleus device in treating lumbar degenerative disc disease with disc herniations. SAS J. 2008;2(3):130-136. https://doi.org/10.1016/SASJ-2008-0008-NT.
  45. Selviaridis P., Foroglou N., Tsitlakidis A. et al. Long-term outcome after implantation of prosthetic disc nucleus device (PDN) in lumbar disc disease. Hippokratia. 2010;14(3):176-184.
  46. Zhang Z.M., Zhao L., Qu D.B., Jin D.D. Artificial nucleus replacement: surgical and clinical experience. Orthop Surg. 2009;1(1):52-57. https://doi.org/10.1111/j.1757-7861.2008.00010.x.
  47. Alpízar-Aguirre A., Mireles-Cano J.N., Rosales-Olivares M. et al. Clinical and radiological follow-up of nubac disc prosthesis. Preliminary report. Cir Cir 2008;76(4):311-315.
  48. Brown T., Bao Q.B., Kilpela T., Songer M. An in vitro biotribological assessment of NUBAC, a polyetheretherketone-on-polyetheretherketone articulating nucleus replacement device: methodology and results from a series of wear tests using different motion profiles, test frequencies, and environmental conditions. Spine (Phila Pa 1976). 2010;35(16):E774-81. https://doi.org/10.1097/BRS.0b013e3181d59e45.
  49. Bao Q.B., Songer M., Pimenta L. et al. Nubac disc arthroplasty: preclinical studies and preliminary safety and efficacy evaluations. SAS J. 2007;1(1):36-45. https://doi.org/10.1016/SASJ-2006-0007-RR.
  50. Sieber A.N., Kostuik J.P. Concepts in nuclear replacement. Spine J. 2004;4(6 Suppl):322S-4S. https://doi.org/10.1016/j.spinee.2004.07.029.
  51. Ahrens M., Tsantrizos A., Donkerstloot P. et al. Nucleus replacement with the dascor disc arthroplasty device. Spine (Phila Pa 1976). 2009;34(13):1376-1384. https://doi.org/10.1097/BRS.0b013e3181a3967f.
  52. Kanayama M., Hashimoto T., Shigenobu K. et al. A minimum 10-year follow-up of posterior dynamic stabilization using graf artificial ligament. Spine (Phila Pa 1976). 2007;32(18):1992-1996. https://doi.org/10.1097/BRS.0b013e318133faae.
  53. Sengupta D.K., Mulholland R.C. Fulcrum assisted soft stabilization system: a new concept in the surgical treatment of degenerative low back pain. Spine (Phila Pa 1976). 2005;30(9):1019-1029.
  54. Hadlow S.V., Fagan A.B., Hillier T.M., Fraser R.D. The graft ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain. Spine (Phila Pa 1976). 1998;23(l0):1172-1179.
  55. Choi Y., Kim K., So K. Adjacent segment instability after treatment with a graf ligament at minimum 8 years’ follow up. Clin Orthop Relat Res. 2009;467(7):1740-1746. https://doi.org/10.1007/s11999-009-0887-6.
  56. Grevitt M.P., Gardner A.D., Spilsbury J. et al. The Graf stabilisation system: early results in 50 patients. Eur Spine J. 1995;4(3):169-175.
  57. Markwalder T.M., Wenger M. Dynamic stabilization of lumbar motion segments by use of Graf ’s ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients. Acta Neurochir (Wien). 2003;145(3):209-214. https://doi.org/10.1007/s00701-002-1056-9.
  58. Stoll T.M., Dubois G., Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur. Spine J. 2002;11 Suppl 2:S170-178. https://doi.org/10.1007/s00586-002-0438-2.
  59. Cakir B., Carazzo C., Schmidt R. et al. Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine (Phila Pa 1976). 2009;34(12):1287-1291. https://doi.org/10.1097/BRS.0b013e3181a136ab.
  60. Cienciala J., Chaloupka R., Repko M., Krbec M. Dynamic neutralization using the Dynesys system for treatment of degenerative disc disease of the lumbar spine. Acta Chir Orthop Traumatol Cech. 2010;77(3):203-208 [Article in Czech].
  61. Grob D., Benini A., Junge A., Mannion A.F. Clinical experience with the dynesyssemirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30(3):324-331.
  62. Schaeren S., Broger I., Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976). 2008;33(18):E636-642. https://doi.org/10.1097/BRS.0b013e31817d2435.
  63. Putzier M., Hoff E., Tohtz S. et al. Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. Eur Spine J. 2010;19(12):2181-2189. https://doi.org/10.1007/s00586-010-1517-4.
  64. Strube P., Tohtz S., Hoff E. et al. Dynamic stabilization adjacent to single-level fusion: part I. Biomechanical effects on lumbar spinal motion. Eur Spine J. 2010;19(12):2171-2180. https://doi.org/10.1007/s00586-010-1549-9.
  65. Zhang L., Shu X., Duan Y. et al. Effectiveness of ISOBAR TTL semi-rigid dynamic stabilization system in treatment of lumbar degenerative disease. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012;26(9):1066-1070 [Article in Chinese].
  66. Sangiorgio S.N., Sheikh H., Borkowski S.L. et al. Comparison of three posterior dynamic stabilization devices. BRS. 2011;36(19):E1251-1258. https://doi.org/10.1097/BRS.0b013e318206cd84.
  67. Barrey C., Perrin G., Champain S. Pedicle-screw-based dynamic systems and degenerative lumbar diseases: biomechanical and clinical experiences of dynamic fusion with Isobar TTL. ISRN Orthop. 2013;2013:183702. https://doi.org/10.1155/2013/183702.
  68. Qian J., Bao Z.H., Li X. et al. Short-term therapeutic efficacy of the Isobar TTL dynamic internal fixation system for the treatment of lumbar degenerative disc diseases. Pain Physician. 2016;19(6):E853-861.
  69. Gao J., Zhao W., Zhang X. et al. MRI analysis of the Isobar TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation. J Orthop Surg Res. 2014;9:43. https://doi.org/10.1186/1749-799X-9-43.
  70. Coe J.D., Kitchel S.H., Meisel H.J. et al. NFlex dynamic stabilization system: two year clinical outcomes of multi-center study. J Korean Neurosurg Soc. 2012;51(6):343-349. https://doi.org/10.3340/jkns.2012.51.6.343.
  71. Gornet M.F., Chan F.W., Coleman J.C. et al. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng. 2011;133(8):081009. https://doi.org/10.1115/1.4004862.
  72. Ormond D.R., Albert Jr. L., Das K. Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. Clin Spine Surg. 2016;29(7):E371-375. https://doi.org/10.1097/BSD.0b013e318277cb9b.
  73. Abode-Iyamah K., Kim S.B., Grosland N. et al. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods. J Clin Neurosci. 2014;21(4):651-655. https://doi.org/10.1016/j.jocn.2013.08.010.
  74. Obid P., Danyali R., Kueny R. et al. Hybrid instrumentation in lumbar spinal fusion: a biomechanical evaluation of three different instrumentation techniques. Global Spine J. 2017;7(1):47-53. https://doi.org/10.1055/s-0036-1583945.
  75. Tahal D., Madhavan K., Chieng L.O. et al. Metals in spine. World Neurosurg. 2017;100:619-627. https://doi.org/10.1016/j.wneu.2016.12.105.
  76. Lukina E., Kollerov M., Meswania J. et al. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws. Mater Sci. Eng. C Mater Biol Appl. 2017;72:601-610. https://doi.org/10.1016/j.msec.2016.11.120.
  77. Kolesov S.V., Kolbovsky D.A., Kazmin A.I., Morozova N.S. The use of nitinol rods in the surgical treatment of degenerative diseases of the spine with fixation of the lumbosacral junction. Hirurg Pozvonoc. 2016;13(1):41-49 (in Russ.) https://doi.org/10.14531/ss2016.1.41–49.
  78. Davydov E.A., Mushkin A.Yu., Zuev I.V. et al. The use of biologically and mechanically compatible implants from nitinol for the surgical treatment of injuries and diseases of the spine and spinal cord. Genij Ortopedii. 2010;1:5-11. (in Russ.)
  79. Zuev I.V., Shchedrenok V.V., Orlov S.V. et al. The experience of dynamic fixation of nitinol implants in degenerative diseases of the spine. Genij Ortopedii. 2014;2:30-38. (in Russ.)
  80. Schmoelz W., Onder U., Martin A., Strempel A.V. Nonfusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. Eur Spine J. 2009;18(10):1478-1485. https://doi.org/10.1007/s00586-009-1052-3.
  81. Bozkus H., Senoglu M., Baek S. et al. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. J Neurosurg Spine. 2010;12(2):183-189. https://doi.org/10.3171/2009.9.SPINE0951.
  82. Kaner T., Sasani M., Oktenoglu T. et al. Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic “semirigid” posterior system. SAS J. 2010;4(4):99-106. https://doi.org/10.1016/j.esas.2010.09.003.
  83. Ozer A.F., Oktenoglu T., Egemen E. et al. Lumbar single-level dynamic stabilization with semi-rigid and full dynamic systems: a retrospective clinical and radiological analysis of 71 patients. Clin Orthop Surg. 2017;9(3):310-316. https://doi.org/10.4055/cios.2017.9.3.310.
  84. Stoffel M., Behr M., Reinke A. et al. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation. Acta Neurochir. (Wien). 2010;152(5):835-843. https://doi.org/10.1007/s00701-009-0583-z.
  85. Erbulut D.U., Kiapour A., Oktenoglu T. et al. A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw. J Biomech Eng. 2014;136(5):051007. https://doi.org/10.1115/1.4027060.
  86. Yu A.K., Siegfried C.M., Chew B. et al. Biomechanics of posterior dynamic fusion systems in the lumbar spine: implications for stabilization with improved arthrodesis. Clin Spine Surg. 2016;29(7):E325-330. https://doi.org/10.1097/BSD.0b013e31827588b1.
  87. Panjabi M.M., Timm J.P. Development of Stabilimax NZ from biomechanical principles. SAS J. 2007;1(1):2-7. https://doi.org/10.1016/SASJ-2006-0006-CO.
  88. Yue J.J., Timm J.P., Panjabi M.M., Jaramillo-de la Torre J. Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus. 2007;22(1):E12.
  89. Bono C.M., Kadaba M., Vaccaro A.R. Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech. 2009;22(5):376-383. https://doi.org/10.1097/BSD.0b013e31817c6489.
  90. Wilke H.J., Schmidt H., Werner K. et al. Biomechanical evaluation of a new total posterior element replacement system. Spine (Phila Pa 1976). 2006;31(24):2790-2796. https://doi.org/10.1097/01.brs.0000245872.45554.c0.
  91. McAfee P., Khoo L.T., Pimenta L. et al. Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients. Neurosurg Focus. 2007;22(1):E13.
  92. Anekstein Y., Floman Y., Smorgick Y. et al. Seven years follow-up for total lumbar facet joint replacement (TOPS) in the management of lumbar spinal stenosis and degenerative spondylolisthesis. Eur Spine J. 2015;24(10):2306-2314. https://doi.org/10.1007/s00586-015-3850-0.
  93. Phillips F.M., Tzermiadianos M.N., Voronov L.I. et al. Effect of the total facet arthroplasty system after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Spine J. 2009;9(1):96-102. https://doi.org/10.1016/j.spinee.2008.01.010.
  94. Voronov L.I., Havey R.M., Rosler D.M. et al. L5–S1 segmental kinematics after facet arthroplasty. SAS J. 2009;3(2):50-58. https://doi.org/10.1016/SASJ-2009-0001-RR.
  95. Sjovold S.G., Zhu Q., Bowden A. et al. Biomechanical evaluation of the Total Facet Arthroplasty System® (TFAS®): loading as compared to a rigid posterior instrumentation system. Eur Spine J. 2012;21(8):1660-1673. https://doi.org/10.1007/s00586-012-2253-8.
  96. Goel V.K., Mehta A., Jangra J. et al. Anatomic Facet Replacement System (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS J. 2007;1(1):46-54. https://doi.org/10.1016/SASJ-2006-0010-RR.
  97. Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the wallis system. Eur Spine J. 2002;11(2):S164-169. https://doi.org/10.1007/s00586-002-0423-9.
  98. Jiang Y.Q., Che W., Wang H.R. et al. Minimum 5 year follow-up of multi-segmental lumbar degenerative disease treated with discectomy and the Wallis interspinous device. J Clin Neurosci. 2015;22(7):1144-1149. https://doi.org/10.1016/j.jocn.2014.12.016.
  99. Zucherman J.F., Hsu K.Y., Hartjen C.A. et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976). 2005;30(12):1351-1358.
  100. Verhoof O.J., Bron J.L., Wapstra F.H., Van Royen B.J. High failure rate of the interspinous distraction device (X Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17(2):188-192. https://doi.org/10.1007/s00586-007-0492-x.
  101. Puzzilli F., Gazzeri R., Galarza M. et al. Interspinous spacer decompression (X-STOP) for lumbar spinal stenosis and degenerative disk disease: a multicenter study with a minimum 3-year follow-up. Clin Neurol Neurosurg. 2014;124:166-174. https://doi.org/10.1016/j.clineuro.2014.07.004.
  102. Lønne G., Johnsen L.G., Rossvoll I. et al. Minimally invasive decompression versus X-Stop in lumbar spinal stenosis: a randomized controlled multicenter study. Spine (Phila Pa 1976). 2015;40(2):77-85. https://doi.org/10.1097/BRS.0000000000000691.
  103. Lu K., Liliang P.C., Wang H.K. et al. Clinical outcome following DIAM implantation for symptomatic lumbar internal disk disruption: a 3-year retrospective analysis. J Pain Res. 2016;9:917-924. https://doi.org/10.2147/JPR.S115847.
  104. Krappel F., Brayda-Bruno M., Alessi G. et al. Herniectomy versus herniectomy with the DIAM spinal stabilization system in patients with sciatica and concomitant low back pain: results of a prospective randomized controlled multicenter trial. Eur Spine J. 2017;26(3):865-876. https://doi.org/10.1007/s00586-016-4796-6.
  105. Lu K., Liliang P.C., Wang H.K. et al. Reduction in adjacent-segment degeneration after multilevel posterior lumbar interbody fusion with proximal DIAM implantation. J Neurosurg Spine. 2015;23(2):190-196. https://doi.org/10.3171/2014.12.SPINE14666.
  106. Park S.C., Yoon S.H., Hong Y.P. et al. Minimum 2-year follow-up result of degenerative spinal stenosis treated with Interspinous U (coflex). J Korean Neurosurg Soc. 2009;46(4):292-299. https://doi.org/10.3340/jkns.2009.46.4.292.
  107. Errico T.J., Kamerlink J.R., Quirno M. et al. Survivorship of coflex Interlaminar-Interspinous Implant. SAS J. 2009;3(2):59-67. https://doi.org/10.1016/SASJ-2008-0027-RR.
  108. Bae H.W., Lauryssen C., Maislin G. et al. Therapeutic sustainability and durability of coflexinterlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment. Int J Spine Surg. 2015;9:15. https://doi.org/10.14444/2015.
  109. Kumar N., Shah S.M., Ng Y.H. et al. Role of coflex as an adjunct to decompression for symptomatic lumbar spinal stenosis. Asian Spine J. 2014;8(2):161. https://doi.org/10.4184/asj.2014.8.2.161.
  110. Kim Y.J., Lee S.G., Park C.W. et al. Long-term follow-up (minimum 5 years) study of single-level posterior dynamic stabilization in lumbar degenerative disease; «Interspinous U» & «DIAM». Korean J Spine. 2012;9(2):102-107. https://doi.org/10.14245/kjs.2012.9.2.102.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.