The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kravchenko S.V.

Krasnodar branch of S.N. Fedorov National Medical Research Center “MNTK “Eye Microsurgery”;
Kuban State Technological University

Sakhnov S.N.

Krasnodar branch of S.N. Fedorov National Medical Research Center “MNTK “Eye Microsurgery”;
Kuban State Medical University

Myasnikova V.V.

Krasnodar branch of S.N. Fedorov National Medical Research Center “MNTK “Eye Microsurgery”;
Kuban State Medical University

Trofimenko A.I.

Kuban State Technological University;
Kuban State Medical University;
Scientific Research Institute — Ochapovsky Regional Clinical Hospital No. 1

Buzko V.Yu.

Kuban State University

Bioprinting technologies in ophthalmology

Authors:

Kravchenko S.V., Sakhnov S.N., Myasnikova V.V., Trofimenko A.I., Buzko V.Yu.

More about the authors

Journal: Russian Annals of Ophthalmology. 2023;139(5): 105‑112

Read: 3755 times


To cite this article:

Kravchenko SV, Sakhnov SN, Myasnikova VV, Trofimenko AI, Buzko VYu. Bioprinting technologies in ophthalmology. Russian Annals of Ophthalmology. 2023;139(5):105‑112. (In Russ., In Engl.)
https://doi.org/10.17116/oftalma2023139051105

References:

  1. Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199. https://doi.org/10.3390/ma11112199
  2. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the Biologist. Cell. 2021;184(1):18-32.  https://doi.org/10.1016/j.cell.2020.12.002
  3. Gorbatov RO, Romanov AD. Bioprinting of organs and tissues. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2017;3(63):3-9. (In Russ.). https://doi.org/10.19163/1994-9480-2017-3(63)-3-9
  4. Sun W, Starly B, Daly AC, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002. https://doi.org/10.1088/1758-5090/ab5158
  5. Kravchenko SV, Myasnikova VV, Sakhnov SN. Application of the organ-on-a-chip technology in experimental ophthalmology. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2023;139(1):114-120. (In Russ., In Engl.). https://doi.org/10.17116/oftalma2023139011114
  6. Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A state‐of‐the‐art review of laser‐assisted bioprinting and its future research trends. ChemBioEng Reviews. 2021;8(5):517-534.  https://doi.org/10.1002/cben.202000037
  7. Volotovski ID, Pinchuk SV. Three-dimensional 3D-bioprinting: the basis of technology and its application in the interests of biology and medicine. Proceedings of the National Academy of Sciences of Belarus. Biological series = Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk. 2022;67(1):114-126. (In Russ.). https://doi.org/10.29235/1029-8940-2022-67-1-114-126
  8. Tan G, Ioannou N, Mathew E, Tagalakis AD, Conceptualisation DAL, Conceptualisation CYWM. 3D printing in Ophthalmology: From medical implants to personalised medicine. Int J Pharmaceut. 2022;625:122094. https://doi.org/10.1016/j.ijpharm.2022.122094
  9. Kravchenko SV, Myasnikova VV, Sakhnov SN. The Chick Embryo and Its Structures as a Model System for Experimental Ophthalmology. Bull Exp Biol Med. 2023;174(4):405-412.  https://doi.org/10.1007/s10517-023-05718-0
  10. Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioengin. 2020;117(1):272-284.  https://doi.org/10.1002/bit.27176
  11. Leonov DV, Spirina YuA, Yatsenko AA, Kushnarev VA, Ustinov EM, Barannikov SV. Advanced 3D Bioprinting Technologies. Tsitologiya. 2021;63(4): 309-321. (In Russ.). https://doi.org/10.31857/S0041377121040064
  12. Pati F, Jang J, Lee JW, Cho DW. Extrusion bioprinting. In: Atala A., Yoo J.J., eds. Essentials of 3D biofabrication and translation. Academic Press. 2015;123-152.  https://doi.org/10.1016/B978-0-12-800972-7.00007-4
  13. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Meth Primers. 2021;1(1):75.  https://doi.org/10.1038/s43586-021-00073-8
  14. Ramesh S, Harrysson OL, Rao PK, et al. Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. https://doi.org/10.1016/j.bprint.2020.e00116
  15. Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters — Towards 3D bioprinting revolution! Int J Bioprint. 2018;4(2):139.  https://doi.org/10.18063/IJB.v4i2.139
  16. Stapenhorst F, dos Santos MG, Prestes JP, Alcantara BJ, Borges MF, Pranke P. Bioprinting: A promising approach for tissue regeneration. Bioprinting. 2021;22:e00130. https://doi.org/10.1016/j.bprint.2021.e00130
  17. Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R, Boland T. Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells in vitro. Biofabrication. 2019;11(4):045005. https://doi.org/10.1088/1758-5090/ab25f9
  18. Kodunov AM, Tereshchenko AV, Trifanenkova IG, et al. Effect of the peptide solution on the processes of rat cornea angiogenesis in experiment. Saratov Journal of Medical Scientific Research = Saratovskiy nauchno-meditsinskiy zhurnal. 2021;17(2):314-318. (In Russ.).
  19. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910-5917. https://doi.org/10.1016/j.biomaterials.2009.06.034
  20. Gao Q, Kim BS, Gao G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Marine Drugs. 2021; 19(12):708.  https://doi.org/10.3390/md19120708
  21. Shamojan GM, Trofimenko AI, Kade AH, et al. The influence of d-aspaphagine on the biocompatibility of the modified alginate hydrogel with the rat’s skeletal muscle tissue. Journal of Volgograd State Medical University = Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2018;1(65): 67-70. (In Russ.). https://doi.org/10.19163/1994-9480-2018-1(65)-67-70
  22. Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4): 042001. https://doi.org/10.1088/1758-5090/ab331e
  23. Glukhova SA, Molchanov VS, Lokshin BV, et al. Printable alginate hydrogels with embedded network of halloysite nanotubes: Effect of polymer cross-linking on rheological properties and microstructure. Polymers. 2021; 13(23):4130. https://doi.org/10.3390/polym13234130
  24. Li H, Liu S, Lin L. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int J Bioprint. 2016;2(2):54-66.  https://doi.org/10.18063/IJB.2016.02.007
  25. Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Marine Drugs. 2019; 17(10):555.  https://doi.org/10.3390/md17100555
  26. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater. 2019;31:1801651. https://doi.org/10.1002/adma.201801651
  27. Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Annals of Anatomy-Anatomischer Anzeiger. 2022;240:151858. https://doi.org/10.1016/j.aanat.2021.151858
  28. Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: A comprehensive review. Int J Bioprint. 2020;6(3):270.  https://doi.org/10.18063%2Fijb.v6i3.270
  29. Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater. 2019;29:1804943. https://doi.org/10.1002/adfm.201804943
  30. Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review. Polymers. 2021; 13(14):2319. https://doi.org/10.3390/polym13142319
  31. Layrolle P, Payoux P, Chavanas S. Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules. 2022;13(1):25.  https://doi.org/10.3390/biom13010025
  32. Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and challenges of translational corneal bioprinting. Bioengineering. 2020;7(3):71.  https://doi.org/10.3390/bioengineering7030071
  33. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exper Eye Res. 2018;173:188-193.  https://doi.org/10.1016/j.exer.2018.05.010
  34. Shi P, Edgar TYS, Yeong WY, Laude A. Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research. Int J Bioprint. 2017;3(2):008.  https://doi.org/10.18063/IJB.2017.02.008
  35. Wang P, Li X, Zhu W et al. 3D bioprinting of hydrogels for retina cell culturing. Bioprinting. 2018;12:e00029. https://doi.org/10.1016/j.bprint.2018.e00029
  36. Yang Q, Lian Q, Xu F. Perspective: fabrication of integrated organ-on-a-chip via bioprinting. Biomicrofluidics. 2017;11(3):031301. https://doi.org/10.1063/1.4982945
  37. Kravchenko SV, Sakhnov SN, Myasnikova VV. Modern concepts of bionic vision. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2022; 138(3):95-101. (In Russ., In Engl.). https://doi.org/10.17116/oftalma202213803195
  38. Agarwala S, Lee JM, Ng WL, Layani M, Yeong WY, Magdassi S. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosensors Bioelectronics. 2018;102:365-371.  https://doi.org/10.1016/j.bios.2017.11.039

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.