The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bikbov M.M.

Ufa Eye Research Institute

Gizzatov A.V.

Ufa Eye Research Institute

Zainullin R.M.

Ufa Eye Research Institute

Effects of systemic drugs on the development of drug-induced retinopathy

Authors:

Bikbov M.M., Gizzatov A.V., Zainullin R.M.

More about the authors

Journal: Russian Annals of Ophthalmology. 2022;138(2): 94‑99

Read: 3516 times


To cite this article:

Bikbov MM, Gizzatov AV, Zainullin RM. Effects of systemic drugs on the development of drug-induced retinopathy. Russian Annals of Ophthalmology. 2022;138(2):94‑99. (In Russ.)
https://doi.org/10.17116/oftalma202213802194

References:

  1. Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017; 390(10094):600‐612.  https://doi.org/10.1016/S0140-6736(17)30544-5
  2. Mozherenkov VP, Prokofieva GL. Optic nerve and retinal lesions in general drug therapy. Medicinskaya gazeta. 1998;61:7 (In Russ.).
  3. Kim HA, Lee S, Eah KS, Yoon YH. Prevalence and Risk Factors of Tamoxifen Retinopathy. Ophthalmology. 2020;127(4):555‐557.  https://doi.org/10.1016/j.ophtha.2019.10.038
  4. Doshi RR, Fortun JA, Kim BT, Dubovy SR, Rosenfeld PJ. Pseudocystic foveal cavitation in tamoxifen retinopathy. Am J Ophthalmol. 2014;157(6): 1291‐1298.e3.  https://doi.org/10.1016/j.ajo.2014.02.046
  5. Renouf DJ, Velazquez-Martin JP, Simpson R, Siu LL, Bedard PL. Ocular toxicity of targeted therapies. J Clin Oncol. 2012;30(26):3277‐3286. https://doi.org/10.1200/jco.2011.41.5851
  6. Redfern WS, Storey S, Tse K, et al. Evaluation of a convenient method of assessing rodent visual function in safety pharmacology studies: effects of sodium iodate on visual acuity and retinal morphology in albino and pigmented rats and mice. J Pharmacol Toxicol Methods. 2011;63(1):102‐114.  https://doi.org/10.1016/j.vascn.2010.06.008
  7. Kuznetsova AV, Kurinov AM, Aleksandrova MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J Ophthalmol. 2014;2014:801787. https://doi.org/10.1155/2014/801787
  8. Wakabayashi Y, Nishimura A, Higashide T, Ijiri S, Sugiyama K. Unilateral choroidal excavation in the macula detected by spectral-domain optical coherence tomography. Acta Ophthalmol. 2010;88(3):e87‐e91.  https://doi.org/10.1111/j.1755-3768.2010.01895.x
  9. Cronin BG, Lekich CK, Bourke RD. Tamoxifen therapy conveys increased risk of developing a macular hole. Int Ophthalmol. 2005;26(3):101‐105.  https://doi.org/10.1007/s10792-005-5424-3
  10. Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82‐118.  https://doi.org/10.1016/j.preteyeres.2015.05.003
  11. Ahlers C, Geitzenauer W, Stock G, Golbaz I, Schmidt-Erfurth U, Prünte C. Alterations of intraretinal layers in acute central serous chorioretinopathy. Acta Ophthalmol. 2009;87(5):511‐516.  https://doi.org/10.1111/j.1755-3768.2008.01468.x
  12. Fraunfelder FW, Fraunfelder FT. Central serous chorioretinopathy associated with sildenafil. Retina. 2008;28(4):606‐609.  https://doi.org/10.1097/iae.0b013e31815ec2c8
  13. Nicholson BP, Atchison E, Idris AA, Bakri SJ. Central serous chorioretinopathy and glucocorticoids: an update on evidence for association. Surv Ophthalmol. 2018;63(1):1‐8.  https://doi.org/10.1016/j.survophthal.2017.06.008
  14. Karaarslan C. Ocular Side Effects of Sildenafil That Persist Beyond 24 h-A Case Series. Front Neurol. 2020;11:67. Published 2020 Feb 7.  https://doi.org/10.3389/fneur.2020.00067
  15. Gass JD. Nicotinic acid maculopathy. Am J Ophthalmol. 1973;76(4):500‐510.  https://doi.org/10.1016/0002-9394(73)90738-1
  16. Al-Mujaini A, Wali UK, Azeem S. Optical coherence tomography: clinical applications in medical practice. Oman Med J. 2013;28(2):86‐91.  https://doi.org/10.5001/omj.2013.24
  17. Fraunfelder FW, Fraunfelder FT, Illingworth DR. Adverse ocular effects associated with niacin therapy. Br J Ophthalmol. 1995;79(1):54‐56.  https://doi.org/10.1136/bjo.79.1.54
  18. Schwartz SG, Mieler WF. Retinal and choroidal manifestations of systemic medications. Springer. 2013;75(2):479-492.  https://doi.org/10.1007/978-1-4614-3646-1_26
  19. Domanico D, Verboschi F, Altimari S, Zompatori L, Vingolo EM. Ocular Effects of Niacin: A Review of the Literature. Med Hypothesis Discov Innov Ophthalmol. 2015;4(2):64‐71. 
  20. Kuznetcova TI, Cech P, Herbort CP. The mystery of angiographically silent macular oedema due to taxanes. Int Ophthalmol. 2012;32(3):299‐304.  https://doi.org/10.1007/s10792-012-9558-9
  21. Ouyang Y, Keane PA, Sadda SR, Walsh AC. Detection of cystoid macular edema with three-dimensional optical coherence tomography versus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5213-5128. Epub 2010 Mar 31.  https://doi.org/10.1167/iovs.09-4635
  22. World Health Organization. (2020). Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020 (No. WHO/2019-nCoV/clinical/2020.4). World Health Organization.
  23. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186(8):4794‐4804. https://doi.org/10.4049/jimmunol.1000702
  24. Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010;51(11):6030‐6037. https://doi.org/10.1167/iovs.10-5278
  25. Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol. 2009;93(11):1444‐1447. https://doi.org/10.1136/bjo.2008.157198
  26. Mititelu M, Wong BJ, Brenner M, Bryar PJ, Jampol LM, Fawzi AA. Progression of hydroxychloroquine toxic effects after drug therapy cessation: new evidence from multimodal imaging. JAMA Ophthalmol. 2013;131(9): 1187‐1197. https://doi.org/10.1001/jamaophthalmol.2013.4244
  27. Geamănu Pancă A, Popa-Cherecheanu A, Marinescu B, Geamănu CD, Voinea LM. Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. Review. J Med Life. 2014;7(3):322‐326. 
  28. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402‐415.  https://doi.org/10.1056/nejmoa0907839
  29. Zarbin MA, Jampol LM, Jager RD, et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology. 2013;120(7):1432‐1439. https://doi.org/10.1016/j.ophtha.2012.12.040
  30. Breukink MB, Dingemans AJ, den Hollander AI, et al. Chronic central serous chorioretinopathy: long-term follow-up and vision-related quality of life. Clin Ophthalmol. 2016;11:39‐46. Published 2016 Dec 20.  https://doi.org/10.2147/opth.s115685
  31. Brinkmann V, Billich A, Baumruker T, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883‐897.  https://doi.org/10.1038/nrd3248
  32. Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69‐94.  https://doi.org/10.1146/annurev-immunol-020711-075011
  33. Dedov II, Shestakova MV. Sakharnyi diabet i chronicheskaya bolezn pochek. M. 2009;39-59. (In Russ.).
  34. Rahi AH, Hungerford JL, Ahmed AI. Ocular toxicity of desferrioxamine: light microscopic histochemical and ultrastructural findings. Br J Ophthalmol. 1986;70(5):373‐381.  https://doi.org/10.1136/bjo.70.5.373
  35. Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364(2):146‐156.  https://doi.org/10.1056/nejmct1004810
  36. Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol. 2013;58(6):585‐609.  https://doi.org/10.1016/j.survophthal.2012.12.002
  37. Leung E, Landa G. Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol. 2013;6(5):565‐579.  https://doi.org/10.1586/17512433.2013.829645
  38. Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous. 2016;2:12. Published 2016 Apr 8.  https://doi.org/10.1186/s40942-016-0035-x
  39. Cunnane, Stephen C. Zinc Clinical and Biochemical Significance. Boca Raton, Fla.: CRC press; 2018. https://doi.org/10.1201/9781351077811
  40. Wielgus AR, Roberts JE. Retinal photodamage by endogenous and xenobiotic agents. Photochem Photobiol. 2012;88(6):1320‐1345. https://doi.org/10.1111/j.1751-1097.2012.01174.x
  41. Nowak-Sliwinska P, van den Bergh H, Sickenberg M, Koh AH. Photodynamic therapy for polypoidal choroidal vasculopathy. Prog Retin Eye Res. 2013;37:182‐199.  https://doi.org/10.1016/j.preteyeres.2013.09.003

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.