The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Suetov A.A.

Kafedra oftal'mologii Voenno-meditsinskoĭ akademii im. S.M. Kirova, Sankt-Peterburg

Boĭko É.V.

Kafedra oftal'mologii Voenno-meditsinskoĭ akademii im. S.M. Kirova, Sankt-Peterburg

Hyalocytes of the vitreous body and their role in ophthalmic pathology

Authors:

Suetov A.A., Boĭko É.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2018;134(6): 94‑101

Read: 2201 times


To cite this article:

Suetov AA, Boĭko ÉV. Hyalocytes of the vitreous body and their role in ophthalmic pathology. Russian Annals of Ophthalmology. 2018;134(6):94‑101. (In Russ.)
https://doi.org/10.17116/oftalma201813406194

Recommended articles:

References:

  1. Boiko EV, Suetov AA, Maltsev DS. Posterior hyaloid membrane detachment: concept, morbidity, nosology, clinical picture and possible reasons. Oftalmologičeskie vedomosti. 2009;3(3):38-45. (In Russ.)
  2. Sdobnikova SV, Stoliarenko GE. Contribution of posterior hyaloid membrane to pathogenesis and transciliary surgery of proliferative diabetic retinopathy. Vestnik Oftalmologii. 1999;115(1):11-13. (In Russ.)
  3. Sebag J. Vitreous: in health and disease. New York: Springer Verlag; 2014.
  4. Hannover A. Endeckung des Baues des Glaskorpers. Máller Arch. 1845.
  5. Schwalbe G. Lehrbuch der Anatomie des Auges. Erlangen: E Besold; 1887.
  6. Balazs E.A. In: Acta XVIII. Concilium ophthalmologicum. Vol 2. Brussels: 1958.
  7. Gloor BP. Development of the vitreous body and zonula. II. Vitreous body cells during development and regression of hyaloid vessels and the lenticular vascular tunic. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1973;186(4):311-328.
  8. Gloor BP. Mitotic activity in the cortical vitreous cells (hyalocytes) after photocoagulation. Invest Ophthalmol. 1969;8:633-646.
  9. Vagaja NN, Chinnery HR, Binz N, Kezic JM, Rakoczy EP, McMenamin PG. Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci. 2012;53(3):1445-1451. https://doi.org/10.1167/iovs.11-8601
  10. Ogawa K. Scanning electron microscopic study of hyalocytes in the guinea pig eye. Arch Histol Cytol. 2002;65(3):263-268. https://doi.org/10.1679/aohc.65.263
  11. Haddad A, André JC. Hyalocyte-like cells are more numerous in the posterior chamber than they are in the vitreous of the rabbit eye. Exp Eye Res. 1998;66(6):709-718. https://doi.org/10.1006/exer.1997.0476
  12. Sano Y, Matsuda K, Okamoto M, Takehana K, Hirayama K, Taniyama H. Characterization of equine hyalocytes: their immunohistochemical properties, morphologies and distribution. J Vet Med Sci. 2016;78(6):937-942. https://doi.org/10.1292/jvms.15-0511
  13. Balazs EA, Toth LZJ, Eeckl EA, Mitchel AP. Studies on the structure of the vitreous body. XII. Cytological and histochemical studies on the cortical tissue layer. Exp Eye Res. 1964;3:57-71.
  14. Grabner G, Boltz G, Förster O. Macrophage-like properaties of human hyalocytes. Invest Ophthalmol Vis Sci. 1980;19(4):333-340.
  15. Freeman MI, Jacobson B, Toth LZ, Balazs EA. Lysosomal enzymes associated with vitreous hyalocyte granules. 1. Intracellular distribution patterns of enzymes. Exp Eye Res. 1968;7(1):113-120.
  16. François J, Victoria-Troncoso V, Zagorski Z. Histoenzymologic study of hyalocytes in tissue culture. Am J Ophthalmol. 1979;88(3, Pt 1):396-401.
  17. Saga T, Tagawa Y, Takeuchi T, Nerome K, Matsuda H. Electron microscopic study of cells in vitreous of guinea pig. Jpn J Ophthalmol. 1984;28:239-247.
  18. Snead MP, Snead DR, Richards AJ, Harrison JB, Poulson AV, Morris AH, Sheard RM, Scott JD. Clinical, histological and ultrastructural studies of the posterior hyaloid membrane. Eye (Lond). 2002;16(4):447-453. https://doi.org/10.1038/sj.eye.6700198
  19. Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, Nakamura T, Sakamoto T, Ishibashi T. The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol. 2005;89:513-517. https://doi.org/10.1136/bjo.2004.050658
  20. Lazarus HS, Hageman GS. In situ characterization of the human hyalocyte. Arch Ophthalmol. 1994;112:1356-1362. https://doi.org/10.1001/archopht.1994.01090220106031
  21. Gloor BP, Rokos L, Kaldarar-Pedotti S. Cell cycle time and life-span of cells in the mouse eye. Measurements during the postfetal period using repeated 3H-thymidine injections. Dev Ophthalmol. 1985;12:70-129.
  22. van Meurs JC, Sorgente N, Gauderman WJ, Ryan SJ. Clearance rate of macrophages from the vitreous in rabbits. Curr Eye Res. 1990;9:683-686.
  23. Balazs EA, Toth LZ, Ozanics V. Cytological studies on the developing vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;213(2):71-85.
  24. Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989;30(8):1867-1871.
  25. Osterlin SE, Jacobson B. The synthesis of hyaluronic acid in vitreous. I. Soluble and particulate transferases in hyalocytes. Exp Eye Res. 1968;7(4):497-510.
  26. Smith GN, Newsome DA. The nature and origin of the glycosaminoglycans of the embryonic chick vitreous body. Dev Biol. 1978;62:65-77.
  27. Swann DA. Chemistry and biology of the vitreous body. Int Rev Exp Pathol. 1980;22:1-64.
  28. Nishitsuka K, Kashiwagi Y, Tojo N, Kanno C, Takahashi Y, Yamamoto T, Heldin P, Yamashita H. Hyaluronan production regulation from porcine hyalocyte cell line by cytokines. Exp Eye Res. 2007;85(4):539-545. https://doi.org/10.1016/j.exer.2007.07.006
  29. Sommer F, Pollinger K, Brandl F, Weiser B, Tessmar J, Blunk T, Göpferich A. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-beta1. Graefes Arch Clin Exp Ophthalmol. 2008;246:1275-1284. https://doi.org/10.1007/s00417-008-0846-z
  30. Rhodes RH, Mandelbaum SH, Minckler DS, Cleary PE. Tritiated fucose incorporation in the vitreous body, lens and zonules of the pigmented rabbit. Exp Eye Res. 1982;34(6):921-931.
  31. Jacobson B. Biosynthesis of hyaluronic acid in the vitreous. V. Studies on a particulate hyalocyte glycosyl transferase. Exp Eye Res. 1978;27:247-258. https://doi.org/10.1016/0014-4835(78)90161-6
  32. Newsome DA, Linsenmayer TF, Trelstad RL. Vitreous body collagen. Evidence for a dual origin from the neural retina and hyalocytes. J Cell Biol. 1976;71(1):59-67.
  33. Ayad S, Weiss JB. A new look at vitreous-humour collagen. Biochem J. 1984;218(3):835-840.
  34. Balazs EA. Functional anatomy of the vitreous. In: Duane TD, Jaeger EA (eds). Biomedical Foundations of Ophthalmology. Vol 1, Ch 17. Harper and Row: Philadelphia. 1984;1-16.
  35. Bishop PN, Reardon AJ, McLeod D, Ayad S. Identification of alternatively spliced variants of type II procollagen in vitreous. Biochem Biophys Res Commun. 1994;203:289-295.
  36. Wang J, McLeod DS, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. Invest Ophthalmol Vis Sci. 2003;44:1793-1800.
  37. Uehara M, Imagawa T, Kitagawa H. Morphological studies of the hyalocytes in the chicken eye: scanning electron microscopy and inflammatory response after the intravitreous injection of carbon particles. J Anat. 1996;188(3):661-669.
  38. Sonoda KH, Sakamoto T, Qiao H, Hisatomi T, Oshima T, Tsutsumi-Miyahara C, Exley M, Balk SP, Taniguchi M, Ishibashi T. The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity: vitreous cavity-associated immune deviation. Immunology. 2005;116(3):390-399. https://doi.org/10.1111/j.1365-2567.2005.02239.x
  39. Korkmaz D, Kum S. Investigation of the antigen recognition and presentation capacity of pecteneal hyalocytes in the chicken (gallus gallus domesticus). Biotech Histochem. 2016;91(3):212-219. Epub 2016 Mar 10. https://doi.org/10.3109/10520295.2015.1136987
  40. Jiang LQ, Streilein JW. Immune privilege extended to allogeneic tumor cells in the vitreous cavity. Invest Ophthalmol Vis Sci. 1991;32(1):224-228.
  41. Jiang LQ, Jorquera M, Streilein JW. Subretinal space and vitreous cavity as immunologically privileged sites for retinal allografts. Invest Ophthalmol Vis Sci. 1993;34(12):3347-3354.
  42. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11):879-889. https://doi.org/10.1038/nri1224
  43. Ocular Pathology, 7-th Edition. By Myron Yanoff and Joseph W. Sassani. 2015;714.
  44. Hata Y, Nakao S, Kohno R, Oba K, Kita T, Miura M, Sassa Y, Schering A, Ishibashi T. Role of tumour necrosis factor-α (TNFα) in the functional properties of hyalocytes. Br J Ophthalmol. 2011;95(2):261-265. https://doi.org/10.1136/bjo.2010.190322
  45. Noda Y, Hata Y, Hisatomi T, et al. Functional properties of hyalocytes under PDGF-rich conditions. Invest Ophthalmol Vis Sci. 2004;45:2107-2114.
  46. Tkachuk VA, Plekhanova OS, Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol. 2009;87:231-251. https://doi.org/10.1139/Y08-113
  47. Kita M, Ohmoto Y, Hirai Y, Yamaguchi N, Imanishi J. Induction of cytokines in human peripheral blood mononuclear cells by mycoplasmas. Microbiol Immunol. 1992;36:507-516.
  48. Osusky R, Tao L, Ryan SJ. Interleukin-1 in experimental proliferative vitreoretinopathy. Ophthalmologica. 1997;211:49-52.
  49. Hata Y, Sassa Y, Kita T, Miura M, Kano K, Kawahara S, Arita R, Nakao S, Shih JL, Ishibashi T. Vascular endothelial growth factor expression by hyalocytes and its regulation by glucocorticoid. Br J Ophthalmol. 2008;92(11):1540-1544. https://doi.org/10.1136/bjo.2008.141002
  50. Zhu M, Penfold PL, Madigan MC, Billson FA. Effect of human vitreous and hyalocyte-derived factors on vascular endothelial cell growth. Aust NZJ Ophthalmol. 1997;25(suppl 1):57-60.
  51. Damato EM, Angi M, Romano MR, Semeraro F, Costagliola C. Vitreous analysis in the management of uveitis. Mediators Inflamm. 2012;863418. Epub 2012 Oct 24. https://doi.org/10.1155/2012/863418
  52. Okhravi N, Adamson P, Lightman S. Use of PCR in endophthalmitis. Ocul Immunol Inflamm. 2000;8(3):189-200.
  53. Boiko EV, Pozniak AL, Maltsev DS, Suetov AA, Nuralova IV. Chronic ocular Chlamydia trachomatis infection in rabbits: clinical and histopathological findings in the posterior segment. Invest Ophthalmol Vis Sci. 2014;55(2):1176-1183. https://doi.org/10.1167/iovs.13-13416
  54. Tikhonovich MV, Iojleva EJ, Gavrilova SA. The role of inflammation in the development of proliferative vitreoretinopathy. Klin Med. 2015;93(7):14-20. (In Russ.)
  55. Sakamoto T. Cell biology of hyalocytes. Nippon Ganka Gakkai Zasshi. 2003;107:866-882.
  56. Kohno RI, Hata Y, Kawahara S, et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93:1020-1026. https://doi.org/10.1136/bjo.2008.155069
  57. Schumann RG, Gandorfer A, Ziada J, Scheler R, Schaumberger MM, Wolf A, Kampik A, Haritoglou C. Hyalocytes in idiopathic epiretinal membranes: a correlative light and electron microscopic study. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1887-1894. https://doi.org/10.1007/s00417-014-2841-x
  58. Schumann RG, Eibl KH, Zhao F, Scheerbaum M, Scheler R, Schaumberger MM, Wehnes H, Walch AK, Haritoglou C, Kampik A, Gandorfer A. Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes. Invest Ophthalmol Vis Sci. 2011;52(11):7822-7834. https://doi.org/10.1167/iovs.11-7514
  59. Canataroglu H, Varinli I, Ozcan AA, Canataroglu A, Doran F, Varinli S. Interleukin (IL)-6, interleukin (IL)-8 levels and cellular composition of the vitreous humor in proliferative diabetic retinopathy, proliferative vitreoretinopathy, and traumatic proliferative vitreoretinopathy. Ocul Immunol Inflamm. 2005;13(5):375-381.
  60. Tojo N, Kashiwagi Y, Nishitsuka K, Yamamoto S, Asao H, Sugawara N, Yamashita T, Yamamoto T, Yamashita H. Interactions between vitreous-derived cells and vascular endothelial cells in vitreoretinal diseases. Acta Ophthalmol. 2010;88(5):564-570. https://doi.org/10.1111/j.1755-3768.2008.01466.x
  61. Kita T, Hata Y, Arita R, et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci USA. 2008;105:17504-17509. https://doi.org/10.1073/pnas.0804054105
  62. Kawahara S, Hata Y, Kita T, Arita R, Miura M, Nakao S, Mochizuki Y, Enaida H, Kagimoto T, Goto Y, Hafezi-Moghadam A, Ishibashi T. Potent inhibition of cicatricial contraction in proliferative vitreoretinal diseases by statins. Diabetes. 2008;57(10):2784-2793. https://doi.org/10.2337/db08-0302
  63. Priglinger CS, Priglinger S. Pharmacological approach to treatment of proliferative vitreoretinopathy. Ophthalmologe. 2013;110(10):948-959. https://doi.org/10.1007/s00347-013-2832-z

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.