The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kislov M.A.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Bakhmetiev V.I.

Voronezh State Medical University named after N.N. Burdenko

Kildyushov E.M.

N.I. Pirogov Russian National Research Medical University

Krupin K.N.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
Research-and-development Laboratory of Human Morphology

Mathematical modeling of femoral diaphyseal fracture at an acute angle

Authors:

Kislov M.A., Bakhmetiev V.I., Kildyushov E.M., Krupin K.N.

More about the authors

Journal: Forensic Medical Expertise. 2022;65(6): 37‑41

Read: 1642 times


To cite this article:

Kislov MA, Bakhmetiev VI, Kildyushov EM, Krupin KN. Mathematical modeling of femoral diaphyseal fracture at an acute angle. Forensic Medical Expertise. 2022;65(6):37‑41. (In Russ.)
https://doi.org/10.17116/sudmed20226506137

Recommended articles:
Methods of diatom extraction: current status and future dire­ctions. Fore­nsic Medi­cal Expe­rtise. 2025;(2):50-54

References:

  1. Mo F, Arnoux PJ, Cesari D, Masson C. The failure modelling of knee ligaments in the finite element model. International Journal of Crashworthiness. 2012;6(17):630-636.  https://doi.org/10.1080/13588265.2012.704194
  2. Milanowicz M, Kedzior K. Active numerical model of human body for reconstruction of falls from height. Forensic Science International. 2016;270:223-231.  https://doi.org/10.1016/j.forsciint.2016.10.009
  3. Adamec J, Jelen K, Kubovy P, Lopot F, Schuller E. Forensic Biomechanical Analysis of Falls from Height Using Numerical Human Body Models. Forensic Sci. 2010;55(6):1615-1623. https://doi.org/10.1111/j.1556-4029.2010.01445.x
  4. Leonov SV, Pinchuk PV, Krupin KN, Panfilov DA. The mathematical modeling of the injurious impact on the tibial bone for the evaluation of the conditions leading to its fracture. Sudebno-meditsinskaya ekspertiza. 2017;60(2):11-13. (In Russ.). https://doi.org/10.17116/sudmed201760211-13
  5. Pinchuk PV, Krupin KN, Panfilov DA. Mathematical modeling of a difficult tension of a tibial bone for an assessment of character a change. Meditsinskaya ekspertiza i pravo. 2016;6:42-46. (In Russ.).
  6. Kislov MA, Krupin KN. Visualization of morphology by rib destruction when exposed to a stab-cut object. Nauchnaya vizualizatsiya. 2021;13(5):95-104.  https://doi.org/10.26583/sv.13.5.08
  7. Ansys. Website. Accessed July 5, 2022. https://www.ansys.com/products/structures/ansys-ls-dyna
  8. Engelke K, van Rietbergen B, Zysset P. FEA to Measure Bone Strength: A Review. Clinic Rev Bone Miner Metab. 2016;14(1):26-37.  https://doi.org/10.1007/s12018-015-9201-1
  9. Kojić M, Filipović N, Stojanović B, Kojić N. Computer Modeling in Bioengineering: Theoretical Background, Examples and Software. USA: John Wiley & Sons Ltd; 2008. https://doi.org/10.1002/9780470751763
  10. Cong A, Buijs JOD, Dragomir-Daescu D. In situ parameter identification of optimal density — elastic modulus relationships in subject-specific finite element models of the proximal femur. Medical Engineering & Physics. 2011;33(2):164-173.  https://doi.org/10.1016/j.medengphy.2010.09.018
  11. Biswas JK, Malas A, Majumdar S, Rana M. A comparative finite element analysis of artificial intervertebral disc replacement and pedicle screw fixation of the lumbar spine. Computer Methods in Biomechanics and Biomedical Engineering. 2022;1(1):1-9.  https://doi.org/10.1080/10255842.2022.2039130
  12. Guan T, Zhang Y, Anwar A, Zhang Y, Wang L. Determination of Three-Dimensional Corrective Force in Adolescent Idiopathic Scoliosis and Biomechanical Finite Element Analysis. Front Bioeng Biotechnol. 2020;8:963.  https://doi.org/10.3389/fbioe.2020.00963
  13. Luo C, Wu X-D, Wan Y, Liao J, Cheng Q, Tian M, Bai Z, Huang W. Femoral Stress Changes after Total Hip Arthroplasty with the Ribbed Prosthesis: A Finite Element Analysis. BioMed Research International. 2020;1(1):8.  https://doi.org/10.1155/2020/6783936
  14. Keller TS, Mao Z, Spengler DM. Young’s modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res. 1990;8(4):592-603.  https://doi.org/10.1002/jor.1100080416
  15. Chirchir H. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton. Anatomy Research International. 2016;1(1):7.  https://doi.org/10.1155/2016/9295383
  16. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. 1998;31(7):601-608.  https://doi.org/10.1016/s0021-9290(98)00057-8
  17. Yosibash Z, Tal D, Trabelsi N. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Trans A Math Phys Eng Sci. 2010;368(1920):2707-2723. https://doi.org/10.1098/rsta.2010.0074
  18. Kryukov VN. Diagnostikum mehanizmov i morfologii perelomov pri tupoy travme skeleta. Izd. 2-e pererab. Novosibirsk: Nauka; 2011. (In Russ.).
  19. Bakhmetev VI, Buromskiy IV, Kryukov VN, Nagornov MN. Diagnostics of the bone tissue destruction mechanisms on the fracture surface. Sudebno-meditsinskaya ekspertiza. 1991;34(4):11-17. (In Russ.).
  20. Bakhmetev VI. Determination of the type and direction of external influences on the destruction morphology a long tubular bone. Sudebnaya meditsina. 2019;5(S1):155. (In Russ.).
  21. Bakhmetev VI, Kislov MA. Determination of the type of external impact based on the analysis of the morphology of the lower extremities long tubular bones fracture. Sudebno-meditsinskaya ekspertiza. 2008;51(6):11-14. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.