The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Lavrenova G.V.

Pavlov First Saint-Petersburg State Medical University

Oganyan K.A.

Pirogov Russian National Research Medical University

Intranasal drug delivery: reality and prospects

Authors:

Lavrenova G.V., Oganyan K.A.

More about the authors

Journal: Russian Rhinology. 2025;33(2): 143‑150

Read: 496 times


To cite this article:

Lavrenova GV, Oganyan KA. Intranasal drug delivery: reality and prospects. Russian Rhinology. 2025;33(2):143‑150. (In Russ.)
https://doi.org/10.17116/rosrino202533021143

References:

  1. Piskunov GZ. Normal and pathological physiology of the nose and paranasal sinuses. Russian Rhinology. 2017;25(3):51-57. (In Russ.). https://doi.org/10.17116/rosrino201725351-57
  2. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366-379.  https://doi.org/10.1016/j.pharmthera.2012.03.003
  3. Jaiswal YS, Williams LL. A glimpse of Ayurveda — The forgotten history and principles of Indian traditional medicine. J Tradit Complement Med. 2016;7(1):50-53.  https://doi.org/10.1016/j.jtcme.2016.02.002
  4. Zarshenas MM, Zargaran A, Müller J, Mohagheghzadeh A. Nasal Drug Delivery in Traditional Persian Medicine. Jundishapur Journal of Natural Pharmaceutical Products. 2013;8(3):144-148.  https://doi.org/10.17795/jjnpp-9990
  5. Karpishchenko SA, Lavrenova GV, Shakhnazarov AE, Muratova EI. Acute and chronic rhinosinusitis: additional possibilities of conservative therapy. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2018;24(4):62-68. (In Russ.).
  6. Gizurarson S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr Drug Deliv. 2012;9(6):566-582.  https://doi.org/10.2174/156720112803529828.
  7. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614-628.  https://doi.org/10.1016/j.addr.2011.11.002
  8. Choi R, Goldstein BJ. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investig Otolaryngol. 2018;3(1):35-42.  https://doi.org/10.1002/lio2.135
  9. Tai J; Han M; Lee D; Park I-H; Lee SH, Kim TH. Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics. 2022;14:1073. https://doi.org/10.3390/pharmaceutics14051073
  10. Laberko EL, Talalaev AG, Bogomil’skiĭ MR, Bullikh AV. The method for the direct evaluation of the state of mucociliary clearance in the children. Russian Bulletin of Otorhinolaryngology. 2015;80(2):40-44. (In Russ.). https://doi.org/10.17116/otorino201580240-44
  11. Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respiratory Physiology & Neurobiology. 2008;163 (1-3):202-207.  https://doi.org/10.1016/j.resp.2008.05.010
  12. Mall MA. Role of Cilia, Mucus, and Airway Surface Liquid in Mucociliary Dysfunction: Lessons from Mouse Models. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2008;21(1):13-24.  https://doi.org/10.1089/jamp.2007.0659.
  13. Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics. 2019;11(3):113.  https://doi.org/10.3390/pharmaceutics11030113
  14. Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal Formulations for Nose-to-Brain Delivery: Recent Advances and Future Perspectives. Pharmaceutics. 2019;11(10):540.  https://doi.org/10.3390/pharmaceutics11100540
  15. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. Journal of Pharmaceutical Sciences. 2010;99(4):1654-1673. https://doi.org/10.1002/jps.21924
  16. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337-362.  https://doi.org/10.1016/j.ejpb.2018.05.009
  17. Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: Towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17:493-505.  https://doi.org/10.1208/s12248-015-9724-x
  18. Singh S, Shukla R. Nanovesicular-mediated intranasal drug therapy for neurodegenerative disease. AAPS PharmSciTech. 2023;24:179.  https://doi.org/10.1208/s12249-023-02625-5
  19. Ying W. The nose may help the brain: Intranasal drug delivery for treating neurological diseases. Future Neurol. 2007;3:1-4.  https://doi.org/10.2217/14796708.3.1.1
  20. Liu Q, Shen Y, Chen J, Gao X, Feng C, Wang L, Zhang Q, Jiang X. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res. 2012;29(2):546-558.  https://doi.org/10.1007/s11095-011-0641-0
  21. Schaefer ML, Böttger B, Silver WL, Finger TE. Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol. 2002; 444(3):221-226.  https://doi.org/10.1002/cne.10143
  22. Thorne RG, Pronk GJ, Padmanabhan V, Frey W. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481-496.  https://doi.org/10.1016/j.neuroscience.2004.05.029
  23. Gänger S, Schindowski K. Tailoring formulations for intranasal nose- to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10:116.  https://doi.org/10.3390/pharmaceutics10030116
  24. Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid Nanoparticles for Nasal/Intranasal Drug Delivery. Crit Rev Ther Drug Carrier Syst. 2017;34(3):257-282.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693
  25. Cunha S, Almeida H, Amaral MH, Lobo JMS, Silva AC. Intranasal lipid nanoparticles for the treatment of neurodegenerative diseases. Curr Pharm Des. 2017 Nov 27.  https://doi.org/10.2174/1381612824666171128105305
  26. Quintana DS, Alvares GA, Hickie IB, Guastella AJ. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci Biobehav Rev. 2015; 49:182-192.  https://doi.org/10.1016/j.neubiorev.2014.12.011
  27. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol. 2012;12(8):592-605.  https://doi.org/10.1038/nri3251
  28. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25(12):563-570.  https://doi.org/10.1016/j.tibtech.2007.09.005
  29. Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther. 2013;140(2):176-185.  https://doi.org/10.1016/j.pharmthera.2013.06.008
  30. Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288-311.  https://doi.org/10.18433/j3nc79
  31. Schipper NG, Verhoef JC, Merkus FW. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8(7):807-814.  https://doi.org/10.1023/a:1015830907632
  32. Walker WT, Liew A, Harris A, Cole J, Lucas JS. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir Med. 2013;107(3):380-386.  https://doi.org/10.1016/j.rmed.2012.11.021
  33. Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. Int Rev Neurobiol. 2023;171:255-297.  https://doi.org/10.1016/bs.irn.2023.05.014
  34. Badran MM, Alanazi AE, Ibrahim MA, Alshora DH, Taha E, H Alomrani A. Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies. Polymers (Basel). 2023;15(19):3890. https://doi.org/10.3390/polym15193890
  35. Kannavou M, Karali K, Katsila T, Siapi E, Marazioti A, Klepetsanis P, Calogeropoulou T, Charalampopoulos I, Antimisiaris SG. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics. 2023;15(2):419.  https://doi.org/10.3390/pharmaceutics15020419
  36. Pailla SR, Sampathi S, Junnuthula V, Maddukuri S, Dodoala S, Dyawanapelly S. Brain-Targeted Intranasal Delivery of Zotepine Microemulsion: Pharmacokinetics and Pharmacodynamics. Pharmaceutics. 2022;14(5):978.  https://doi.org/10.3390/pharmaceutics14050978
  37. Porfiryeva NN, Semina II, Moustafine RI, Khutoryanskiy VV. Intranasal administration as a route to deliver drugs to the brain. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2021;10(4):117-127. (In Russ.). https://doi.org/10.33380/2305-2066-2021-10-4-117-127
  38. Oliveira P, Fortuna A, Alves G, Falcao A. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: Influence on the bioavailability of intranasally administered drugs. Curr Drug Metab. 2016;17:628-647.  https://doi.org/10.2174/1389200217666160406120509
  39. Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy. Curr. Neuropharmacol. 2023;21(3):493-516.  https://doi.org/10.2174/1570159X20666220507022701
  40. Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Drug delivery system-factors affecting and applications. Curr Drug Ther. 2007;2:27-38.  https://doi.org/10.2174/157488507779422374
  41. Chen S, Zhang J, Wu L, Wu H, Dai M. Paeonol nanoemulsion for enhanced oral bioavailability: Optimization and mechanism. Nanomedicine. 2018; 13:269-282.  https://doi.org/10.2217/nnm-2017-0277
  42. Kumar NN, Gautam M, Lochhead JJ, Wolak DJ, Ithapu V, Singh V, Thorne RG. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: Implications for nasal physiology and drug delivery. Sci Rep. 2016;6:31732. https://doi.org/10.1038/srep31732
  43. Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88:8-27.  https://doi.org/10.1016/j.ejpb.2014.03.004
  44. Huang Q, Chen X, Yu S, Gong G, Shu H. Research progress in brain-targeted nasal drug delivery. Front Aging Neurosci. 2024;15:1341295. https://doi.org/10.3389/fnagi.2023.1341295
  45. Duchěne D, Ponchel G. Nasal administration: a tool for tomorrow’s systemic administration of drugs. Drug development and industrial pharmacy. 1993;19(1-2):101-122. 
  46. Lemoine JL, Farley R, Huang L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock. Gene Ther. 2005;12:1275-1282. https://doi.org/10.1038/sj.gt.3302548
  47. Li Y, Fan X, Li W, Yang P, Zhang H, Tang D, Yin X, Sun J, Zheng A. Metoclopramide nasal spray in vitro evaluation and in vivo pharmacokinetic studies in dogs. Pharm Dev Technol. 2018;23(3):275-281.  https://doi.org/10.1080/10837450.2017.1316734
  48. Mittal D, Ali A, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv. 2014;21:75-86.  https://doi.org/10.3109/10717544.2013.838713
  49. Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364-389.  https://doi.org/10.1016/j.jconrel.2017.09.001
  50. Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm Nanotechnol. 2017;5:203-214.  https://doi.org/10.2174/211738505666170515113936
  51. Marcello E, Chiono V. Biomaterials-enhanced intranasal delivery of drugs as a direct route for brain targeting. Int J Mol Sci. 2023;24:3390. https://doi.org/10.3390/ijms24043390
  52. Gladkaya YuV, Losenkova SO, Evseev AV, Mikheeva AV. Let’s analyze the range of intranasal dosage forms and predict its expansion. Bulletin of the Smolensk State Medical Academy. 2018;17(4):157-164. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.