The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Mokrysheva N.G.

Éndokrinologicheskiĭ nauchnyĭ tsentr, Moskva

Kiselev S.L.

Privolzhskiy Research Medical University, Nizhniy Novgorod, Russia

Klementieva N.V.

Privolzhskiy Research Medical University, Nizhniy Novgorod, Russia

Gorbacheva A.M.

Lomonosov Moscow State University, Moscow, Russian Federation

Dedov I.I.

Endocrinology Research Centre

The use of confocal microscopy in experimental studies and clinical practice of an endocrinologist: modern opportunities

Authors:

Mokrysheva N.G., Kiselev S.L., Klementieva N.V., Gorbacheva A.M., Dedov I.I.

More about the authors

Journal: Problems of Endocrinology. 2019;65(3): 174‑183

Read: 1921 times


To cite this article:

Mokrysheva NG, Kiselev SL, Klementieva NV, Gorbacheva AM, Dedov II. The use of confocal microscopy in experimental studies and clinical practice of an endocrinologist: modern opportunities. Problems of Endocrinology. 2019;65(3):174‑183. (In Russ.)
https://doi.org/10.14341/probl10140

Recommended articles:
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145
Philosophy in pathological anatomy. Russian Journal of Archive of Pathology. 2025;(4):62-67

References:

  1. Nwaneshiudu A, Kuschal C, Sakamoto FH, et al. Introduction to confocal microscopy. J Invest Dermatol. 2012;132(12):e3. https://doi.org/10.1038/jid.2012.429
  2. Bhutani J, Chakinala RC, Bhutani S, Sachdeva S. Endocrine and metabolic disease: confocal microscopy as a diagnostic aid. Indian J Endocrinol Metab. 2015;19(1):171–173. https://doi.org/10.4103/2230-8210.146877
  3. Katoh R, Hemmi A, Komiyama A, Kawaoi A. Confocal laser scanning microscopic observation of angioarchitectures in human thyroid neoplasms. Hum Pathol. 1999;30(10):1226–1231. https://doi.org/10.1016/s0046-8177(99)90042-4
  4. Pang Y, Tsigkou O, Spencer JA, et al. Analyzing structure and function of vascularization in engineered bone tissue by video-rate intravital microscopy and 3D image processing. Tissue Eng Part C Methods. 2015;21(10):1025–1031. https://doi.org/10.1089/ten.TEC.2015.0091
  5. Tovey SC, Brighton PJ, Willars GB. Confocal microscopy: theory and applications for cellular signaling. Methods Mol Biol. 2005; 312:57–85. https://doi.org/10.1385/1-59259-949-4:057
  6. Bögeholz N, Schulte JS, Kaese S, et al. The effects of SEA0400 on Ca2+ transient amplitude and proarrhythmia depend on the Na+/Ca2+ exchanger expression level in murine models. Front Pharmacol. 2017;8:649. https://doi.org/10.3389/fphar.2017.00649
  7. Remington SJ. Green fluorescent protein: a perspective. Protein Sci. 2011;20(9):1509–1519. https://doi.org/10.1002/pro.684
  8. Chen Y, Huang LM. A simple and fast method to image calcium activity of neurons from intact dorsal root ganglia using fluorescent chemical Ca2+ indicators. Mol Pain. 2017;13:1744806917748051. https://doi.org/10.1177/1744806917748051
  9. Koh J, Hogue JA, Sosa JA. A novel ex vivo method for visualizing live-cell calcium response behavior in intact human tumors. PLoS One. 2016;11(8):e0161134. https://doi.org/10.1371/journal.pone.0161134
  10. Pérez Koldenkova V, Nagai T. Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim Biophys Acta. 2013;1833(7): 1787–1797. https://doi.org/10.1016/j.bbamcr.2013.01.011
  11. Pahlavan S, Morad M. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca2+ probes in rat ventricular myocytes. Cell Calcium. 2017;66:98–110. https://doi.org/10.1016/j.ceca.2017.07.003
  12. Liu C, Deb S, Ferreira VS, et al. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One. 2018;13(2):e0192667. https://doi.org/10.1371/journal.pone.0192667
  13. Zhang Q, Xiao K, Liu H, et al. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem. 2018;293(15):5556–5571. https://doi.org/10.1074/jbc.RA118.001737
  14. Miyashita T. Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol. 2015;1278:515–526. https://doi.org/10.1007/978-1-4939-2425-7_34
  15. Stancu C, Coculescu M. Colocalization methods in pituitary tumorigenesis aged-related in MEN1 KO and wild type mice. J Med Life. 2014;7 (Spec Iss 3):87–94.
  16. Mercurio L, Cecchetti S, Ricci A, et al. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells. PLoS One. 2017;12(4):e0176108. https://doi.org/10.1371/journal.pone.0176108
  17. Cagalinec M, Liiv M, Hodurova Z, et al. Role of mitochondrial dynamics in neuronal development: mechanism for wolfram syndrome. PLoS Biol. 2016;14(7):e1002511. https://doi.org/10.1371/journal.pbio.1002511
  18. Walczak J, Partyka M, Duszyński J, Szczepanowska J. Implications of mitochondrial network organization in mitochondrial stress signalling in NARP cybrid and Rho0 cells. Sci Rep. 2017;7(1):14864. https://doi.org/10.1038/s41598-017-14964-y
  19. Okuthe GE. DNA and RNA pattern of staining during oogenesis in zebrafish (Danio rerio): a confocal microscopy study. Acta Histochem. 2013;115(2):178–184. https://doi.org/10.1016/j.acthis.2012.06.006
  20. Legartova S, Suchankova J, Krejci J, et al. Advanced confocal microscopy techniques to study protein-protein interactions and kinetics at DNA lesions. J Vis Exp. 2017;(Iss 129). https://doi.org/10.3791/55999
  21. Tavakoli M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. J Diabetes Sci Technol. 2013;7(5):1179–1189. https://doi.org/10.1177/193229681300700509
  22. Hyndiuk RA, Kazarian EL, Schultz RO, Seideman S. Neurotrophic corneal ulcers in diabetes mellitus. Arch Ophthalmol. 1977; 95(12):2193–2196. https://doi.org/10.1001/archopht.1977.04450120099012
  23. Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes. 2014;63(7):2454–2463. https://doi.org/10.2337/db13-1819
  24. Asghar O, Petropoulos IN, Alam U, et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care. 2014;37(9):2643–2646. https://doi.org/10.2337/dc14-0279
  25. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56(8):2148–2154. https://doi.org/10.2337/db07-0285
  26. Sivaskandarajah GA, Halpern EM, Lovblom LE, et al. Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care. 2013;36(9):2748–2755. https://doi.org/10.2337/dc12-2075
  27. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254–260. https://doi.org/10.2337/db12-0574
  28. Artemova EV, Galstyan GR, Atarshchikov DS, et al. Confocal retinal microscopy – the new non-invasive method of the early manifestation of the lesions in the peripheral nervous system associated with diabetes mellitus. Problems of endocrinology. 2015;61(2):32–38. (In Russ) https://doi.org/10.14341/probl201561232-38
  29. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes care. 2006;29(6):1294–1299. https://doi.org/10.2337/dc06-0224
  30. Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med. 2011;28(10):1261–1267. https://doi.org/10.1111/j.1464-5491.2011.03372.x
  31. Davidson EP1, Coppey LJ, Holmes A, Yorek MA. Changes in corneal innervation and sensitivity and acetylcholine-mediated vascular relaxation of the posterior ciliary artery in a type 2 diabetic rat. Invest Ophthalmol Vis Sci. 2012;53(3):1182–1187. https://doi.org/10.1167/iovs.11-8806
  32. Wang EF, Misra SL, Patel D V. In vivo confocal microscopy of the human cornea in the assessment of peripheral neuropathy and systemic diseases. Biomed Res Int. 2015;2015:951081. https://doi.org/10.1155/2015/951081
  33. Mukherjee R, Tewary S, Routray A. Diagnostic and prognostic utility of non-invasive multimodal imaging in chronic wound monitoring: a systematic review. J Med Syst. 2017;41(3):46. https://doi.org/10.1007/s10916-016-0679-y
  34. Vardaxis NJ, Brans TA, Boon ME, et al. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J Anat. 1997;190 (Pt 4):601–611. https://doi.org/10.1046/j.1469-7580.1997.19040601.x
  35. Stumpp OF, Bedi VP, Wyatt D, et al. In vivo confocal imaging of epidermal cell migration and dermal changes post nonablative fractional resurfacing: study of the wound healing process with corroborated histopathologic evidence. J Biomed Opt. 2009;14(2):24018. https://doi.org/10.1117/1.3103316
  36. Longo C, Galimberti M, De Pace B, et al. Laser skin rejuvenation: epidermal changes and collagen remodeling evaluated by in vivo confocal microscopy. Lasers Med Sci. 2013;28(3):769–776. https://doi.org/10.1007/s10103-012-1145-9
  37. Lange-Asschenfeldt S, Bob A, Terhorst D, et al. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing. J Biomed Opt. 2012;17(7):76016. https://doi.org/10.1117/1.JBO.17.7.076016
  38. Sattler EC, Poloczek K, Kästle R, Welzel J. Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol. 2013;69(4):e165–173. https://doi.org/10.1016/j.jaad.2013.04.052
  39. Wei Y-H, Chen W-L, Hu F-R, Liao SL. In vivo confocal microscopy of bulbar conjunctiva in patients with Graves’ ophthalmopathy. J Formos Med Assoc. 2015;114(10):965–972. https://doi.org/10.1016/j.jfma.2013.10.003
  40. Villani E, Viola F, Sala R, et al. Corneal involvement in Graves’ orbitopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2010;51(9):4574–4578. https://doi.org/10.1167/iovs.10-5380
  41. Kocabeyoglu S, Mocan MC, Cevik Y, Irkec M. Ocular Surface Alterations and In Vivo Confocal Microscopic Features of Corneas in Patients With Newly Diagnosed Graves’ Disease. Cornea. 2015;34(7):745–749. https://doi.org/10.1097/ICO.0000000000000426
  42. Wirth D, Smith TW, Moser R, Yaroslavsky AN. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy. Phys Med Biol. 2015;60(7):3003–3011. https://doi.org/10.1088/0031-9155/60/7/3003
  43. Mooney MA, Zehri AH, Georges JF, Nakaji P. Laser scanning confocal endomicroscopy in the neurosurgical operating room: a review and discussion of future applications. Neurosurg Focus. 2014;36(2):E9. https://doi.org/10.3171/2013.11.FOCUS13484
  44. Palmer F, Larson B, Moreira A, et al. Identification of parathyroid glands during thyroidectomy using reflectance confocal microscopy: a feasibility study [Internet]. In: World Congress on Thyroid Cancer − 2013, Abstract Book. 2013. [cited 2019 March 12]: [About 1p.] Availible from: https://thyroidworldcongress.com/wp-content/uploads/2013/07/O067_Palmer.pdf
  45. Ragazzi M, Piana S, Longo C, et al. Fluorescence confocal microscopy for pathologists. Mod Pathol. 2014;27(3):460–471. https://doi.org/10.1038/modpathol.2013.158
  46. White WM, Tearney GJ, Pilch BZ, et al. A novel, noninvasive imaging technique for intraoperative assessment of parathyroid glands: confocal reflectance microscopy. Surgery. 2000;128(6):1088–1100; discussion 1100-1001. https://doi.org/10.1067/msy.2000.111190
  47. White WM, Baldassano M, Rajadhyaksha M, et al. Confocal reflectance imaging of head and neck surgical specimens. A comparison with histologic analysis. Arch Otolaryngol Head Neck Surg. 2004;130(8):923–928. https://doi.org/10.1001/archotol.130.8.923
  48. Chang T-P, Palazzo F, Tolley N, et al. Vascularity assessment of parathyroid glands using confocal endomicroscopy: towards an intraoperative imaging tool for real-time in situ viability assessment. Eur J Surg Oncol. 2014;40(1):S3. https://doi.org/10.1016/j.ejso.2014.07.008
  49. Que SK, Fraga-Braghiroli N, Grant-Kels JM, et al. Through the looking glass: Basics and principles of reflectance confocal microscopy. J Am Acad Dermatol. 2015;73(2):276–284. https://doi.org/10.1016/j.jaad.2015.04.047
  50. Jonkman J, Brown CM. Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech. 2015;26(2):54–65. https://doi.org/10.7171/jbt.15-2602-003

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.