На долю рака щитовидной железы приходится 1—1,5% всех онкологических заболеваний. Разработка новых подходов к диагностике и прогнозированию развития этого вида рака является чрезвычайно актуальным в последние десятилетия, что связано с постоянно увеличивающимися темпами прироста заболеваемости. Так, за период с 2004 по 2014 г. прирост заболеваемости населения России раком щитовидной железы составил 18,47%, что позволяет отнести этот рак к самой распространенной злокачественной опухоли эндокринных желез [1].
Развитие злокачественных новообразований щитовидной железы связано с активацией транскрипционных и ростовых факторов. Ключевыми среди них являются транскрипционный фактор NF-κB, играющий основную роль в процессах онкогенеза [2—4], а также ядерный фактор HIF, который способствует образованию ростового фактора VEGF и карбоангидразы IX, определяющих неоангиогенез. Эти события активируют AKT/m-TOR сигнальный каскад и лежат в основе роста и распространения опухоли [5].
Гиперактивация AKT/m-TOR сигнального пути — характерный признак большинства раковых клеток и, по-видимому, играет ключевую роль в механизмах опухолевой трансформации клеток и прогрессии опухолей [6]. К значимым компонентам этого пути относят протеинкиназы AKT, c-Raf, GSK-3, PDK1, а также m-TOR, ее субстраты p70-S64 и E-BP1. Активность данного сигнального каскада регулируется белком-онкосупрессором PTEN.
В опухолях эндокринных органов AKT/m-TOR сигнальный путь изучен менее чем в опухолях другой локализации [7]. Существуют множественные зависимости между уровнями молекулярных маркеров, что отражает интенсивность патологических процессов и может влиять на прогноз заболевания. Однако вклад молекулярных показателей, связанных с активацией транскрипционных, ростовых факторов и компонентов AKT/m-TOR сигнального пути, определяющих особенности папиллярного рака щитовидной железы (ПРЩЖ), практически не исследован.
Цель исследования — сравнение экспрессии транскрипционных факторов NF-κB p65 и p50, HIF-1α, HIF-2α, ростовых факторов VEGF, CAIX и VEGFR2, а также компонентов AKT/m-TOR сигнального пути в ткани ПРЩЖ и в доброкачественных опухолях щитовидной железы.
Материал и методы
Дизайн исследования
Проведено обсервационное одномоментное сплошное контролируемое исследование.
Критерии соответствия
В исследование включали пациентов с верифицированным ПРЩЖ в стадии T1−4N0−2M0 в возрасте от 30 до 70 лет при условии добровольного подписания информированного согласия. В группу контроля включали пациентов с доброкачественными образованиями щитовидной железы сопоставимого возраста при том же условии. Критериями исключения были возраст старше 70 лет, диссеминированный рак щитовидной железы, наличие тяжелой сопутствующей патологии, наличие первично-множественных опухолей других локализаций, отказ пациента от участия в протоколе.
Условия проведения
Исследование проводилось в Научно-исследовательском институте онкологии Томского национального исследовательского медицинского центра РАН.
Описание медицинского вмешательства
Объемы диагностики и лечения больных соответствовали рекомендуемым алгоритмам по диагностике и лечению злокачественных новообразований, утвержденных министерством здравоохранения РФ (2007), и клиническим рекомендациям по диагностике и лечению рака щитовидной железы (2014) [8, 9].
Пациентам с патологией щитовидной железы было проведено оперативное лечение в объеме гемитиреоидэктомии или тиреоидэктомии. На втором этапе лечения при наличии метастазов в лимфатических узлах больные получали терапию радиоактивным йодом. Материалом для исследования явилась опухолевая и гистологически неизмененная ткань щитовидной железы, полученная от больных обеих групп после оперативного вмешательства. Образцы тканей замораживали и хранили при –80 °С.
Основной исход исследования
Определяли экспрессию NF-κB p65 и p50, HIF-1α, HIF-2α, ростовых факторов VEGF, CAIX и VEGFR2, а также компонентов AKT/m-TOR сигнального пути в ткани ПРЩЖ и в доброкачественных опухолях щитовидной железы.
Анализ в подгруппах
В ходе исследования были сформированы две группы:
— в группу, А вошли пациенты с ПРЩЖ в стадии T1−4N0−2M0;
— в группу Б вошли пациенты с доброкачественными новообразованиями щитовидной железы.
Методы регистрации исходов
РНК выделяли с помощью набора RNeasy mini Kit, содержащего ДНКазу I («Qiagen», Германия). На спектрофотометре NanoDrop-2000 («Thermo Scientific», США) оценивали концентрацию и чистоту выделения РНК. Концентрация РНК колебалась от 80 до 250 нг/мкл, А260/А280 = 1.95—2.05; А260/А230 = 1.90—2.31. Целостность РНК оценивалась с помощью капиллярного электрофореза на приборе TapeStation («Agilent Technologies», США) и набора R6K ScreenTape («Agilent Technologies», США). RIN составил 5.6—7.8.
Уровень экспрессии генов оценивали при помощи количественной обратно-транскриптазной ПЦР в режиме реального времени (RT-qPCR) с использованием красителя SYBR Green на амплификаторе iCycler («Bio-Rad», США). Для получения кДНК на матрице РНК проводили реакцию обратной транскрипции с помощью набора m-MuLV-RH («БиоЛабмикс», Россия) со случайными гексануклеотидными праймерами в соответствии с инструкцией. ПЦР ставили в трех репликах в объеме 25 мкл, содержащем 12,5 мкл БиоМастер HS-qPCR SYBR Blue («БиоЛабмикс», Россия), 300 нM прямого и обратного праймеров и 50 нг кДНК. Двухшаговая программа амплификации включала 1 цикл — 94 °C, 10 мин — предварительная денатурация; 40 циклов — 1 шаг 94 °C, 10 с и 2 шаг 20 с — при 60 °C. Праймеры были подобраны с использованием программы Vector NTI Advance 11.5 и базы данных NCBI (http://www.ncbi.nlm. nih.gov/nuccore) (табл. 1).
В качестве референсного гена использовали ген «домашнего хозяйства» фермента GAPDH (glyceraldehydes-3-phosphate dehydrogenase), и уровень экспрессии каждого целевого гена нормализовали по отношению к экспрессии GAPDH. Количественный анализ экспрессии проводили по 2ΔΔСt по отношению к конститутивно-экспрессируемому гену GAPDH.
Этическая экспертиза
Проведение данной работы одобрено локальным этическим комитетом НИИ онкологии Томского НИМЦ (протокол № 5 от 24.04.15).
Статистический анализ
Размер выборки предварительно не рассчитывался. Статистическую обработку результатов проводили с применением пакета программ Statistica 8.0. Результаты определения экспрессии генов представлены как среднее значение ± ошибка среднего. Значимость различий оценивали с помощью критерия Манна—Уитни. Различия считали значимыми при р<0,05. Существование связи между показателями определяли с использованием корреляционного анализа, силу связи между переменными оценивали, рассчитывая коэффициент ранговой корреляции Спирмена (r).
Результаты
Участники исследования
В группу, А были включены 40 больных (7 мужчин, 33 женщины) с ПРЩЖ в возрасте от 33 до 66 лет (средний возраст 52,0±2,6 года) со стадией опухолевого процесса T1−4N0−2M0. Группа Б представлена 22 больными (4 мужчины, 18 женщин) в возрасте от 38 до 66 лет (средний возраст 53,0±4,4 года) с доброкачественными новообразованиями щитовидной железы. У всех больных диагноз был морфологически верифицирован.
Основные результаты исследования
В табл. 2 представлены
Экспрессия ростового фактора VEGF, его рецептора VEGFR2 и CAIX в ткани ПРЩЖ не отличалась от таковой в ткани доброкачественных опухолей железы.
На следующем этапе исследования была изучена экспрессия компонентов AKT/m-TOR сигнального пути (AKT, c-Raf, GSK-3β, PDK1 и PTEN) в ткани новообразований щитовидной железы (табл. 3).
Корреляционный анализ обнаружил многочисленные связи между изучаемыми молекулярными маркерами в ткани ПРЩЖ (рис. 1).
В ткани ПРЩЖ обнаружена прямая зависимость между экспрессией PTEN, c-Raf (r=0,6; p<0,05) и 70-S6 (r=0,8; p<0,05), а также между m-TOR и PDK1 (r=0,7; p<0,05), что указывает на наличие системы регуляции между киназами и их ингибиторами.
Обнаружены ассоциации между экспрессией онкосупрессора PTEN c транскрипционными факторами NF-κB p65 (r=0,76; p<0,05) и NF-κB p50 (r=0,72; p<0,05) (рис. 2, 3),
Обсуждение
Резюме основного результата исследования
Экспрессия транскрипционного фактора HIF-1 в ткани ПРЩЖ связана с прогнозом заболевания и определяет исход патологического процесса [10, 11]. В нашем исследовании показано, что к молекулярно-биологическим характеристикам данной опухоли также можно отнести повышение экспрессии HIF-2, NF-κB p65 и NF-κB p50. Эти изменения приводят к модификации экспрессии компонентов AKT/m-TOR сигнального каскада.
Обсуждение основного результата исследования
В ткани ПРЩЖ отмечено повышение экспрессии протеинкиназы AKT — одного из ключевых компонентов AKT/m-TOR сигнального каскада. Это объясняется преобладанием в клетках опухоли анаболических процессов. Имеются сведения, что в ткани рака щитовидной железы увеличивается содержание AKT [12, 13]. Иными словами, рост экспрессии гена AKT сопровождается увеличением количества его белкового продукта.
Негативным регулятором активности AKT/m-TOR сигнального пути является фосфатаза PTEN. Мы отметили рост уровня ее мРНК при ПРЩЖ. Полагают, что развитие и прогрессирование данной патологии происходят на фоне мутационных изменений гена PTEN, что является одной из причин развития раковых синдромов (синдром Cowden) и связано с формированием функционально неполноценного белка. В исследовании S. Beg и соавт. [14] показано снижение содержания PTEN в 24,5% образцов ПРЩЖ, однако при проведении флуоресцентной гибридизации in situ (FISH) дефект гена PTEN был зафиксирован только в 4,8% образцов.
Мы нашли снижение уровня мРНК c-Raf в ткани ПРЩЖ, что может быть связано с ингибирующим действием киназы AKT. В литературе [15] имеются иные данные об экспрессии протеинкиназы c-Raf в ткани ПРЩЖ. Стоит отметить, что в этой работе связь между экспрессией c-Raf и активностью AKT/m-TOR сигнального каскада не изучалась.
Известно, что ядерный фактор NF-κB может влиять на экспрессию ростового фактора VEGF как непосредственно, так и путем регуляции транскрипции ядерного фактора HIF-1α [16, 17]. Связь между экспрессией HIF-1α и HIF-2α, CAIX, VEGFR2 и между экспрессией HIF-2α и HIF-1α, VEGF также можно объяснить способностью HIF-1α и HIF-2α усиливать транскрипцию генов. Подобные сведения имеются в работах последних лет [18, 19]. Также показана совместная регуляция экспрессии VEGF, его рецептора и CAIX, что является свидетельством эффективной регуляции ангиогенеза.
В ткани ПРЩЖ выявлена связь между экспрессией m-TOR и PDK1, что указывает на роль PDK1 в активации протеинкиназы AKT, субстратом которой является m-TOR [6]. Связь экспрессии фосфатазы PTEN и p70-S6 киназы объясняется, вероятно, регуляцией активности AKT/m-TOR сигнального пути онкосупрессором PTEN [20]. Прямая зависимость между уровнем мРНК c-Raf и экспрессией PTEN показывает, что данная фосфатаза может также влиять на активность MAPK сигнального каскада, который принимает участие в регуляции пролиферации, дифференцировки и апоптоза клеток [10, 11].
Особое значение имеет обнаруженная нами положительная связь между экспрессией ядерных факторов NF-κB p65 и NF-κB p50 c PTEN. В исследованиях K. Vasudevan [21] показано, что активация транскрипционной активности данного ядерного фактора происходит в условиях супрессии PTEN и выраженной активности киназ изучаемого сигнального каскада. К ним относят c-Raf и PDK1. Потеря функциональной активности онкосупрессора PTEN приводит к усилению экспрессии NF-κB за счет активации AKT/m-TOR сигнального каскада [22]. Высокий уровень мРНК фосфатазы PTEN является косвенным доказательством измененной активности данного онкомаркера, что приводит к еще большей активности AKT.
Заключение
В настоящем исследовании установлены важные молекулярно-биологические характеристики ПРЩЖ. К ним относятся высокая экспрессия транскрипционных факторов NF-κB и HIF-2α, протеинкиназы AKT и фосфатазы PTEN, а также низкий уровень мРНК c-Raf. Особенности экспрессии транскрипционных и ростовых факторов, а также компонентов AKT/m-TOR сигнального пути могут влиять на течение заболевания, определяя эффективность лечения. Полученные данные имеют значение как для фундаментальной, так и для клинической онкологии.
Дополнительная информация
Источник финансирования. Работа проведена при поддержке ФГБУ Томский национальный медицинский центр РАН.
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Участие авторов: Л.В. Спирина — определение экспрессии изучаемых показателей, подготовка статьи к публикации; С.Ю. Чижевская — формирование групп исследования; И.В. Кондакова — координация исследования, общее руководство. Все авторы внесли существенный вклад в проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией.
Сведения об авторах
*Спирина Людмила Викторовна — д.м.н. [Liudmila V. Spirina, MD, PhD]; адрес: Россия, 634050, Томск, пер. Кооперативный, д. 5 [address: 5 Kooperativny street, Tomsk, 634050, Russia]; ORCID: https://orcid.org/0000-0002-5269-736X; eLibrary SPIN: 1336-8363; e-mail: spirinalv@oncology.tomsk.ru
Чижевская Светлана Юрьевна — д.м.н. [Sventlana Yu. Chizhevskaya, MD, PhD]; ORCID: http://orcid.org/0000-0003-2974-4778; eLibrary SPIN: 9561-3382; e-mail: sch@oncology.tomsk.ru
Кондакова Ирина Викторовна — д.м.н., проф. [Irina V. Kondakova, MD, PhD, Professor]; ORCID: http://orcid.org/0000-0003-0907-4615; eLibrary SPIN: 9338-4149; e-mail: kondakova@oncology.tomsk.ru