Исследование иммуномодулирующих эффектов гормонов, принимающих активное участие в процессах гестации, необходимо для понимания механизмов, определяющих изменение иммунитета при беременности. Лептин и грелин являются пептидными гормонами, разнонаправленно регулирующими энергетический обмен. Помимо этого, оба гормона обладают иммуномодулирующей активностью и необходимы для реализации репродуктивной функции [1]. Лептин синтезируется адипоцитами и ограничивает избыточное накопление жировой ткани [2]. Грелин вырабатывается тканью желудка и угнетает секрецию лептина, усиливая чувство голода и аппетит [1]. При беременности уровень лептина значительно нарастает, особенно во II—III триместрах [3]. Гормон необходим для успешной имплантации и активно вырабатывается плацентой [1]. Участие грелина в регуляции репродуктивных процессов обусловлено экспрессией рецепторов к нему клетками эндометрия, плаценты и эмбриона. В противоположность лептину уровень грелина нарастает на ранних этапах беременности и снижается в поздние сроки [4]. Грелин препятствует развитию бластоцисты и процессу имплантации [1]. Участие гормонов в регуляции иммунитета определяется их непосредственным влиянием на клетки иммунной системы, которые экспрессируют специфические мембранные рецепторы к лептину и грелину [5—9]. Основные исследования [1, 2, 5—9] иммуномодулирующих эффектов лептина и грелина проводились на моделях ожирения и воспаления, при которых концентрации гормонов значительно превышают физиологические. В работах ряда авторов [1, 2, 10] показано, что лептин является провоспалительным гормоном и способствует преобладанию клеточно-опосредованного иммунного ответа. Грелин оказывает противовоспалительные эффекты и антагонистическое действие по отношению к лептину, блокируя, например, индуцированную лептином продукцию провоспалительных цитокинов [1, 6, 7, 11]. Лептин в свою очередь усиливает экспрессию рецепторов к грелину на иммунокомпетентных клетках [6, 11]. Беременность смещает центр иммунных реакций на T-хелперы (Th) — 2-й тип иммунного реагирования [12], поэтому изучение роли лептина и грелина в контроле функциональной активности лимфоцитов при беременности приобретает особую значимость.
Цель работы — исследовать влияние лептина и грелина, а также их совместные эффекты, в сочетаниях, характерных для разных триместров беременности, на экспрессию мембранных молекул и апоптоз лимфоцитов периферической крови женщин.
Материал и методы
В работе использовали суспензию мононуклеарных лейкоцитов периферической крови здоровых небеременных женщин (от 23 до 35 лет), находящихся в фолликулярной фазе менструального цикла (5—11-й день). Мононуклеарные клетки получали с помощью центрифугирования в градиенте плотности фиколл—верографин (1,077 г/см3). Полученную суспензию (1·106 мл) после двойной отмывки раствором Хэнкса инкубировали в полной питательной среде (среда 199 с добавлением 10 мM HEPES; 2 мM L-глутамина; 100 мкг/мл гентамицина и 10% эмбриональной телячьей сыворотки) с гормонами в течение суток при температуре 37°С в условиях 5% СО2. Лептин («Sigma», США) в культуры вносили в дозах 10 и 35 нг/мл, отражающих его содержание в периферической крови в I и во II—III триместрах беременности соответственно [3]. Грелин («Sigma», Израиль) использовали в концентрациях 1,25 и 0,83 нг/мл, соответствующих уровню гормона в периферической крови в I—II и III триместрах беременности [4]. Для изучения совместных эффектов лептин и грелин вносили в культуры одномоментно в сочетаниях, характерных для I—II (лептин 10 нг/мл + грелин 1,2 нг/мл) и II—III (лептин 35 нг/мл + грелин 0,87 нг/мл) триместров беременности. В контрольные пробы вместо гормонов добавляли равное количество их растворителя (хлорида натрия).
Фенотип лейкоцитов оценивали методом проточной цитометрии на цитофлюориметре EPICS XL («Beckman Coulter», США). После инкубации с гормонами клетки отмывали фосфатно-солевым буфером и окрашивали моноклональными антителами, меченными флуорохромами: флюоресцеинизотиоционатом (FITC) и фикоэритрином (PE), согласно методике производителя («Beckman Coulter», США). Лимфоцитарный гейт выставляли на основе комбинации прямого и бокового светорассеивания и размера клеток, подсчитывая не менее 10 000 клеток. Для контроля неспецифического связывания и выделения негативного по флюоресценции лимфоцитарного окна использовали соответствующие изотипические контроли.
Определяли следующие субпопуляции лимфоцитов: активированные Тh-клетки CD3+CD4+CD25dim (CD4-FITC/CD25-PE), Т-клетки CD4+ с высокой экспрессией CD25 (CD3+CD4+CD25bright), так называемые естественные T-регуляторные лимфоциты, или Treg. Основным маркером Treg является экспрессия в клетке транскрипционного фактора Foxp3, которая коррелирует с интенсивностью экспрессии мембранной молекулы CD25 [13, 14]. Таким образом, к Treg (CD3+CD4+CD25+Foxp3+) относятся именно лимфоциты CD3+CD4+CD25bright, а активированные Тh-клетки составляют пул CD3+CD4+CD25dim [5, 14—16]. Кроме того, определяли содержание натуральных киллеров (NK-клеток) с фенотипом CD3–CD16+CD56+ (CD3-FITC/CD16,56-PE) и Т-клеток с функциями естественных киллеров (NKT-клетки) CD3+CD16+CD56+ (CD3-FITC/CD16,56-PE).
Апоптоз лимфоцитов оценивали путем окрашивания аннексином-V (AnV-FITC) и йодистым пропидием (PI). Данный метод позволяет идентифицировать клетки, находящиеся в ранней (AnV+/PI-) и поздней стадии (AnV+/PI+ ) апоптоза [17]. Для индукции апоптоза использовали анти-CD3 моноклональные антитела (5 мкг/мл, «Медбиоспектр», Россия), которые вносили в культуры вместе с гормонами [18]. Контролем служили пробы, в которые добавляли только индуктор апоптоза.
Достоверность полученных результатов оценивали с помощью парного и непарного t-критериев Стьюдента.
Результаты и обсуждение
С учетом того, что активация Т-клеток играет ключевую роль в поляризации иммунного ответа, а интерлейкин-2 является основным аутокринным регулятором дифференцировки и пролиферации лимфоцитов, исследование гормональной регуляции Т-клеточного звена иммунитета включало анализ экспрессии CD25 (высокоаффинного рецептора к интерлейкину-2) на Тh-клетках. Установлено, что грелин в дозах, характерных для беременности, дозозависимо регулирует экспрессию молекулы CD25 Тh-клетками. Высокая доза гормона увеличивает, а низкая не влияет на процент активированных Т-лимфоцитов с фенотипом CD4+CD25dim. Лептин в исследуемых дозах, напротив, снижает количество CD4+CD25dim Т-клеток. Одновременное внесение гормонов в комбинации, характерной для I—II триместра беременности, нивелирует самостоятельное влияние как лептина, так и грелина на экспрессию CD25 Тh-клетками. Однако в сочетаниях, сопоставимых с таковыми в II—III триместре беременности, гормоны увеличивают процент Т-клеток CD4+CD25dim, что свидетельствует о доминирующем влиянии грелина (табл. 1).
При исследовании регуляторного влияния лептина и грелина, а также их сочетаний на количество Т-клеток CD4+CD25bright (Treg) статистически значимых эффектов не выявлено (см. табл. 1).
Альтернативным исходом Т-клеточной активации является инициация апоптоза. При беременности апоптоз является одним из факторов контроля активации Т-лимфоцитов и индукции периферической толерантности к полуаллогенному трофобласту [12]. Установлено, что грелин в концентрации, характерной для I—II триместра беременности, увеличивает процент лимфоцитов, находящихся в поздней стадии апоптоза (AnV+/PI+). Лептин, напротив, в исследуемых дозах проявляет антиапоптотическое действие, снижая количество AnV+/PI+ лимфоцитов. Результатом совместного действия лептина и грелина в сочетаниях, характерных для разных триместров беременности, является отмена модулирующих влияний гормонов на апоптоз лимфоцитов (табл. 2).
Таким образом, в дозах, характерных для беременности, грелин и лептин меняют направленность регуляторных эффектов на противоположную. Так, грелин, оказывая, по данным литературы, противовоспалительное действие, в концентрациях, отражающих его уровень в разные триместры беременности, проявляет провоспалительную активность, стимулируя активацию и апоптоз лимфоцитов. Лептин в свою очередь, являясь провоспалительным гормоном, оказывает противовоспалительное действие, снижая количество активированных Тh-клеток и апоптоз лимфоцитов. Сочетанное действие грелина и лептина на уровне лимфоцитов нивелирует самостоятельные эффекты каждого гормона и приводит к формированию новых кооперативных эффектов в зависимости от триместра беременности, что, возможно, обусловлено антагонизмом внутриклеточных эффекторных молекул различных сигнальных путей, активируемых при связывании гормонов с рецепторами. Помимо этого, грелин, по-видимому, способен блокировать эффекты лептина путем модуляции экспрессии его рецепторов и/или увеличения продукции эндогенного грелина [6].
Учитывая важную роль NK- и NKТ-клеток при беременности как эффекторов неспецифической резистентности организма, мы посчитали необходимым оценить регуляцию гормонами их фенотипа [12, 16]. Следует отметить, что NK- и NKT-клетки периферической крови конститутивно экспонируют на мембране CD56, тогда как экспрессия CD16 ассоциирована с терминальной стадией их дифференцировки и приобретением наибольшей цитолитической активности [19, 20]. Установлено, что грелин в дозах, характерных для беременности, не влияет на процент NK- и NKT-клеток, экспрессирующих CD16. Лептин, напротив, оказывает разнонаправленное дозозависимое действие на экспрессию молекулы CD16 на NK- и NKT-клетках. Так, в дозе, характерной для I триместра беременности, гормон повышает процент CD16+NK-клеток и не влияет на количество CD16+NKT-лимфоцитов. Однако в концентрации, сопоставимой с таковой в II—III триместре, лептин снижает содержание CD16+NK-клеток и увеличивает процент CD16+NKT-клеток. При одновременном внесении с лептином грелин меняет направленность его эффектов. Так, в комбинации, характерной для I—II триместра беременности, гормоны не влияют на процент CD16+NK- и CD16+NKT-клеток. Однако в дозах, сопоставимых с таковым II—III триместре, гормоны повышают содержание NK-клеток и не влияют на процент NKT-лимфоцитов, экспрессирующих молекулу CD16 (табл. 3).
В целом полученные данные свидетельствуют о том, при беременности грелин и лептин проявляют реципрокные регуляторные эффекты на активацию и апоптоз лимфоцитов, а также фенотип NK- и NKT-клеток, не влияя на уровень Treg. Изменение направленности эффектов лептина и грелина в дозах, характерных для беременности, по-видимому, обусловлено особенностью взаимодействия низких физиологических доз гормонов с клеткой, поскольку основные регуляторные эффекты лептина и грелина исследованы в патофизиологических концентрациях, значительно превышающих содержание гормонов в крови при беременности. Сочетанное влияние лептина и грелина на уровне лимфоцитов в дозах, соответствующих таковым в I—II триместре беременности, нивелирует самостоятельное действие каждого гормона, что важно для сохранения баланса про- и противовоспалительных иммунных реакций на ранних этапах беременности, когда риск развития реакций иммунного отторжения против полуаллогенного плода особенно велик [12]. В то же время преобладание модулирующих эффектов грелина при одновременном внесении гормонов в дозах, характерных для II—III триместра беременности, по-видимому, может стимулировать провоспалительные реакции, что в этот период необходимо для поддержания резистентности организма матери и способствует родам.
Выводы
1. Лептин в дозах, характерных для беременности, снижает процент Т-клеток CD4+CD25dim и апоптоз лимфоцитов, а также оказывает разнонаправленное дозозависимое действие на содержание CD16+56+NK- и CD16+56+NKT-клеток, не влияя на количество T-лимфоцитов CD4 +CD25bright.
2. Грелин в исследуемых концентрациях дозозависимо повышает уровень Т-клеток CD4+CD25dim и апоптоз лимфоцитов, не оказывая действия на количество CD16+56+NK-, CD16+56+NKT-клеток и T-лимфоцитов CD4+CD25bright.
3. При одновременном внесении лептин и грелин в комбинации, характерной для I—II триместра беременности, не влияют на процент Т-клеток CD4+CD25dim и апоптоз лимфоцитов, а также на количество CD16+56+NK- и CD16+56+NKT-клеток, а в сочетании, сопоставимом с таковым в II—III триместре беременности, стимулируют экспрессию молекулы CD25 на Тh-клетках и CD16 на NK-клетках.
Работа выполнена при поддержке федеральной целевой программы фундаментальных исследований Президиума РАН «Молекулярная и клеточная биология».