The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Andryukov B.G.

Somov Research Institute of Epidemiology and Microbiology

Romashko R.V.

Far Eastern Federal University (FEFU)

Efimov T.A.

Far Eastern Federal University (FEFU)

Lyapun I.N.

Somov Research Institute of Epidemiology and Microbiology

Bynina M.P.

Somov Research Institute of Epidemiology and Microbiology

Matosova E.V.

Somov Research Institute of Epidemiology and Microbiology

Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm

Authors:

Andryukov B.G., Romashko R.V., Efimov T.A., Lyapun I.N., Bynina M.P., Matosova E.V.

More about the authors

Read: 5508 times


To cite this article:

Andryukov BG, Romashko RV, Efimov TA, Lyapun IN, Bynina MP, Matosova EV. Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm. Molecular Genetics, Microbiology and Virology. 2020;38(4):155‑161. (In Russ.)
https://doi.org/10.17116/molgen202038041155

Recommended articles:
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121

References:

  1. Rosan B. Microbial adhesion to surfaces. Science. 1981;214(4523):902-903. 
  2. Rosenberg M. Basic and applied aspects of microbial adhesion at the hydrocarbon: water interface. Crit Rev Microbiol. 1991;18(2):159-173.  https://doi.org/10.3109/10408419109113512
  3. Gatewood RR, Cobb CM, Killoy WJ. Microbial colonization on natural tooth structure compared with smooth and plasma-sprayed dental implant surfaces. Clin Oral Implants Res. 1993;4(2):53-64.  https://doi.org/10.1034/j.1600-0501.1993.040201.x
  4. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11:217-221.  https://doi.org/10.1007/978-3-642-21289-5_2
  5. Vasudevan R. Biofilms: microbial cities of scientific significance. J Microbiol Exp. 2014;1(3):84-98.  https://doi.org/10.15406/jmen.2014.01.00014
  6. Garrett TR, Bhakoob M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science. 2008;18(9):1049-1056. https://doi.org/10.1016/j.pnsc.2008.04.001
  7. Staracademy: Internet-sight Montana State University. Data available: 2019-11-02.  https://staracademy.ua/university/HIGH-0096
  8. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S. Application of Environmentally-Friendly Coatings Toward Inhibiting the Microbially Influenced Corrosion (MIC) of Steel: A Review. J Polymer Reviews. 2014;54(4):702-745.  https://doi.org/10.1080/15583724.2014.946188
  9. Lorite GS, Rodrigues CM, de Souza AA, Kranz C, Mizaikoff B, Cotta MA. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Colloid Interface Sci. 2011;59(1):289-295.  https://doi.org/10.1016/j.jcis.2011.03.066
  10. Lamari F, Khouadja S, Rtimi S. Interaction of Vibrio to Biotic and Abiotic Surfaces: Relationship between Hydrophobicity, Cell Adherence, Biofilm Production, and Cytotoxic Activity. Surfaces. 2018;1:187-201.  https://doi.org/10.3390/surfaces1010014
  11. Achinas S, Charalampogiannis N, Euverink GJW. A Brief Recap of Microbial Adhesion and Biofilms. Applied Surface Science. 2019;9:2801. https://doi.org/10.3390/app9142801
  12. Bispo PJ, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens. 2015;4:111-136.  https://doi.org/10.3390/pathogens4010111
  13. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA. Bacterial biofilm and associated infections. J Chin Med Assoc. 2017;81:7-11.  https://doi.org/10.1016/j.jcma.2017.07.012
  14. Di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Laneri A. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control. 2015;50:930-936.  https://doi.org/10.1016/j.foodcont.2014.10.048
  15. Oliveira R, Azeredo J, Texeira P, Fonseca AP. Co-aggregationis it a universal biofilm phenomenum? In: Biofilm Community Interactions: Chances or Necessity, BioLine, Cardiff, UK; 2001;11. 
  16. Pons L, Délia ML, Bergel A. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresour Technol. 2011;102(3):2678-2683. https://doi.org/10.1016/j.biortech.2010.10.138
  17. Shen Y, Monroy GL, Derlon N, Janjaroen D, Huang C, Morgenroth E, et al. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environ Sci Technol. 2015;49(7):4274-4282. https://doi.org/10.1021/es505842v
  18. Ammara Y, Swailesa D, Bridgensb B, Chen J. Influence of surface roughness on the initial formation of biofilm. Surface and Coatings Technology. 2015;284:410-416.  https://doi.org/10.1016/j.surfcoat.2015.07.062
  19. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol. 2015;6:205.  https://doi.org/10.3389/fmicb.2015.00205
  20. Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347-355.  https://doi.org/10.1557/mrs.2011.65
  21. Rzhepishevskaa O, Hakobyana S, Ruhala R, Gautrotb J, Barberoc D, Ramstedt M. The surface charge of anti-bacterial coatings alters motility and biofilm architecture. (Paper) Biomater Sci. 2013;1:589-602.  https://doi.org/10.1039/C3BM00197K
  22. Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Critical Reviews in Biotechnology. 2019;39(8):1015-1030. https://doi.org/10.1080/07388551.2019.1662367
  23. Artyushkova K, Cornejo JA, Ista LK, Babanova S, Santoro C, Atanassov P, et al. Relationship between surface chemistry, biofilm structure, and electron transfer in Shewanella anodes. Biointerphases. 2015;10(1):019013. https://doi.org/10.1116/1.4913783
  24. Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol. 2013;47(13):7563-7570. https://doi.org/10.1021/es400901u
  25. Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci. 2018;261:1-14.  https://doi.org/10.1016/j.cis.2018.10.005
  26. Christenson HK. DLVO (Derjaguin—Landau—Verwey—Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J Chem Soc. 1984;80:1933-1946. https://doi.org/10.1039/F19848001933
  27. Harimawan Al, Zhong S, Lim CT, Ting YP. Adhesion of B. subtilis spores and vegetative cells onto stainless steel-DLVO theories and AFM spectroscopy. J Colloid Interface Sci. 2013;405:233-241.  https://doi.org/10.1016/j.jcis.2013.05.031
  28. Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci. 2018;261:1-14.  https://doi.org/10.1016/j.cis.2018.10.005
  29. Zhang X, Zhou X, Xi H, Sun J, Liang X, Wei J, et al. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory. Colloids Surf B Biointerfaces. 2019;177:454-461.  https://doi.org/10.1016/j.colsurfb.2019.02.035
  30. Andryukov BG, Karpenko AA, Lyapun IN, Matosova EV, Bynina MP. Bacterial Spores: Mechanisms of Stability and Targets for Modern Biotechnologies. Biomed J Sci & Tech Res. 2019;20(5):15329-15344. https://doi.org/10.26717/BJSTR.2019.20.003500
  31. Mazur M, Kalisz M, Wojcieszak D, Grobelny M, Mazur P, Kaczmarek D, et al. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu 1-y) Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications. Mater Sci Eng C Mater Biol Appl. 2015;47:211-221.  https://doi.org/10.1016/j.msec.2014.11.047
  32. Dunne WMJr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155-166.  https://doi.org/10.1128/cmr.15.2.155-166.2002
  33. Zilm PS, Rogers AH. Co-adhesion and biofilm formation by Fusobacterium nucleatum in response to growth pH. Anaerobe. 2007;13(3-4):146-152.  https://doi.org/10.1016/j.anaerobe.2007.04.005
  34. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192-4199. https://doi.org/10.1016/j.biomaterials.2007.05.041
  35. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ. Microbiol. 2013;15(2):334-346.  https://doi.org/10.1111/j.1462-2920.2012.02810.x
  36. Ning C, Mingyan L, Weidong Z. Fouling and Corrosion Properties of SiO2 coatings on Copper in Geothermal Water. Industrial & Engineering Chemistry Research. 2012;51(17):6001-6017. https://doi.org/10.1021/ie202091b
  37. Cai Y, Liu M. Corrosion behavior of titania films coated by liquid-phase deposition on AISI304 stainless steel substrates. AIChE Journal. 2012;58(6):1907-1920. https://doi.org/10.1002/aic.12701
  38. Ostrov E, Polishchuk I, Shemesh M, Pokroy B. Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food. ACS Appl Bio Mater. 2019;2(11):4932-4940. https://doi.org/10.1021/acsabm.9b00674
  39. Zhang X, Wang L, Levanen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Advances. 2013;3(30):12003-12020. https://doi.org/10.1039/C3RA40497H
  40. Mahalakshmi P, Vanithakumari S, Gopal J, Mudali UK, Raj B. Enhancing corrosion and biofouling resistance through superhydrophobic surface modification. Current Science (Bangalore). 2011;101(10):1328-1336. https://www.jstor.org/stable/24079640
  41. Yazdi S, Ardekani AM. Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics. 2012;6(4):44114. https://doi.org/10.1063/1.4771407
  42. Melaugh G, Hutchison J, Kragh KN, Irie Y, Roberts A, Bjarnsholt T, et al. Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates. PLoS One. 2016;11(3):e0149683. https://doi.org/10.1371/journal.pone.0149683
  43. Monds RD, O’Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009;17:73-87.  https://doi.org/10.1016/j.tim.2008.11.001
  44. Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PloS One. 2011;6:e27943. https://doi.org/10.1371/journal.pone.0027943
  45. Naskar A, Black K. phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microbial Pathogenesis. 2019;137:103800. https://doi.org/10.1016/j.micpath.2019.103800
  46. West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112-10119. https://doi.org/10.1073/pnas.1421402112
  47. Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci. 2019;20(15):E3794. https://doi.org/10.3390/ijms20153794
  48. Limoli DH, Jones CJ, Wozniak DJ. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol Spectr. 2015;3(3). https://doi.org/10.1128/microbiolspec.MB-0011-2014
  49. Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009;14(7):2535-2554. https://doi.org/10.3390/molecules14072535
  50. Baruah R, Das D, Goyall A. Heteropolysaccharides from Lactic Acid Bacteria: Current Trends and Applications. J Prob Health. 2016;4:2.  https://doi.org/10.4172/2329-8901.1000141
  51. Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel). 2012;12(3):2519-2538. https://doi.org/10.3390/s120302519
  52. Morán G, Méallet-Renault R. Superhydrophobic Surfaces Toward Prevention of Biofilm-Associated Infections. In: Bacterial Pathogenesis and Antibacterial Control. Sahra, Intech Open; 2017. https://doi.org/10.5772/intechopen.72038
  53. Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci. 2019;11(3):28.  https://doi.org/10.1038/s41368-019-0062-1
  54. Hu J, Lin J, Zhang Y, Lin Z, Qiao Z, Liu Z, et al. A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J Mater Chem A. 2019;7:26039-26052. https://doi.org/10.1039/C9TA07236E
  55. Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. Journal of Orthopaedic Translation. 2019;17:42-54.  https://doi.org/10.1016/j.jot.2018.09.001

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.