The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bogdanova E.O.

Pavlov First St. Petersburg State Medical University

Kochoyan Z.Sh.

Pavlov First St. Petersburg State Medical University

Anpilova A.O.

Pavlov First St. Petersburg State Medical University

Narygina D.S.

Pavlov First St. Petersburg State Medical University

Kostin N.A.

St. Petersburg State University — Research Resource Center for molecular and cell technologies

Sipovsky V.G.

Pavlov First St. Petersburg State Medical University

Dobronravov V.A.

Pavlov First St. Petersburg State Medical University

Molecular alterations of podocytes in primary focal segmental glomerulosclerosis and IgA nephropathy. (An exploratory study)

Authors:

Bogdanova E.O., Kochoyan Z.Sh., Anpilova A.O., Narygina D.S., Kostin N.A., Sipovsky V.G., Dobronravov V.A.

More about the authors

Read: 1418 times


To cite this article:

Bogdanova EO, Kochoyan ZSh, Anpilova AO, Narygina DS, Kostin NA, Sipovsky VG, Dobronravov VA. Molecular alterations of podocytes in primary focal segmental glomerulosclerosis and IgA nephropathy. (An exploratory study). Russian Journal of Archive of Pathology. 2024;86(5):21‑32. (In Russ.)
https://doi.org/10.17116/patol20248605121

Recommended articles:

References:

  1. Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, Romagnani P. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68.  https://doi.org/10.1038/s41572-020-0196-7
  2. D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med. 2011;365(25):2398-2411. https://doi.org/10.1056/NEJMra1106556
  3. Reidy K, Kaskel FJ. Pathophysiology of focal segmental glomerulosclerosis. Pediatr Nephrol. 2007;22(3):350-354.  https://doi.org/10.1007/s00467-006-0357-2
  4. Kitiyakara C, Kopp JB, Eggers P. Trends in the epidemiology of focal segmental glomerulosclerosis. Semin Nephrol. 2003;23(2): 172-182.  https://doi.org/10.1053/snep.2003.50025
  5. Jefferson JA, Shankland SJ. The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis. 2014;21(5):408-416.  https://doi.org/10.1053/j.ackd.2014.05.009
  6. Shabaka A, Tato Ribera A, Fernández-Juárez G. Focal segmental glomerulosclerosis: state-of-the-art and clinical perspective. Nephron. 2020;144(9):413-427.  https://doi.org/10.1159/000508099
  7. Miller-Hodges E, Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J Pathol. 2012;226(2):229-240.  https://doi.org/10.1002/path.2977
  8. Shalygin A, Shuyskiy LS, Bohovyk R, Palygin O, Staruschenko A, Kaznacheyeva E. Cytoskeleton rearrangements modulate TRPC6 channel activity in podocytes. Int J Mol Sci. 2021;22(9):4396. https://doi.org/10.3390/ijms22094396
  9. May CJ, Saleem M, Welsh GI. Podocyte dedifferentiation: a specialized process for a specialized cell. Front Endocrinol (Lausanne). 2014;5:148.  https://doi.org/10.3389/fendo.2014.00148
  10. Ying Q, Wu G. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Ren Fail. 2017;39(1):474-483.  https://doi.org/10.1080/0886022X.2017.1313164
  11. Chen Q, Jiang H, Ding R, Zhong J, Li L, Wan J, Feng X, Peng L, Yang X, Chen H, et al. Cell-type-specific molecular characterization of cells from circulation and kidney in IgA nephropathy with nephrotic syndrome. Front Immunol. 2023;14:1231937. https://doi.org/10.3389/fimmu.2023.1231937
  12. Taneda S, Honda K, Uchida K, Nitta K, Yumura W, Oda H, Nagata M. Histological heterogeneity of glomerular segmental lesions in focal segmental glomerulosclerosis. Int Urol Nephrol. 2012;44(1):183-196.  https://doi.org/10.1007/s11255-011-9932-y
  13. Wada T, Nangaku M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin Kidney J. 2015;8(6):708-715.  https://doi.org/10.1093/ckj/sfv090
  14. Toska E, Roberts SG. Mechanisms of transcriptional regulation by WT1 (Wilms’ tumour 1). Biochem J. 2014;461(1):15-32.  https://doi.org/10.1042/BJ20131587
  15. Gebeshuber CA, Kornauth C, Dong L, Sierig R, Seibler J, Reiss M, Tauber S, Bilban M, Wang S, Kain R, et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med. 2013;19(4):481-487.  https://doi.org/10.1038/nm.3142
  16. Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med. 2009;133(2):201-216.  https://doi.org/10.5858/133.2.201
  17. Ma S, Qiu Y, Zhang C. Cytoskeleton rearrangement in podocytopathies: an update. Int J Mol Sci. 2024;25(1):647.  https://doi.org/10.3390/ijms25010647
  18. Tian X, Ishibe S. Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. Nephrol Dial Transplant. 2016;31(10):1577-1583. https://doi.org/10.1093/ndt/gfw021
  19. Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, et al. LIM-nebulette reinforces podocyte structural integrity by linking actin and vimentin filaments. J Am Soc Nephrol. 2020;31(10):2372-2391. https://doi.org/10.1681/ASN.2019121261
  20. Kostovska I, Trajkovska KT, Topuzovska S, Cekovska S, Labudovic D, Kostovski O, Spasovski G. Nephrinuria and podocytopathies. Adv Clin Chem. 2022;108:1-36.  https://doi.org/10.1016/bs.acc.2021.08.001
  21. Margiotta A, Bucci C. Role of intermediate filaments in vesicular traffic. Cells. 2016;5(2):20.  https://doi.org/10.3390/cells5020020
  22. Embry AE, Mohammadi H, Niu X, Liu L, Moe B, Miller-Little WA, Lu CY, Bruggeman LA, McCulloch CA, Janmey PA, et al. Biochemical and cellular determinants of renal glomerular elasticity. PLoS One. 2016;11(12):e0167924. https://doi.org/10.1371/journal.pone.0167924
  23. Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, Qu Z, Yamamoto T. Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Arch. 2006;448(4):485-492.  https://doi.org/10.1007/s00428-005-0134-9
  24. Herrmann A, Tozzo E, Funk J. Semi-automated quantitative image analysis of podocyte desmin immunoreactivity as a sensitive marker for acute glomerular damage in the rat puromycin aminonucleoside nephrosis (PAN) model. Exp Toxicol Pathol. 2012;64(1-2):45-49.  https://doi.org/10.1016/j.etp.2010.06.004
  25. Hoshi S, Shu Y, Yoshida F, Inagaki T, Sonoda J, Watanabe T, Nomoto K, Nagata M. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Invest. 2002;82(1):25-35.  https://doi.org/10.1038/labinvest.3780392
  26. Yaoita E, Kawasaki K, Yamamoto T, Kihara I. Variable expression of desmin in rat glomerular epithelial cells. Am J Pathol. 1990;136(4):899-908. 
  27. Yamaguchi Y, Iwano M, Suzuki D, Nakatani K, Kimura K, Harada K, Kubo A, Akai Y, Toyoda M, Kanauchi M, et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis. 2009;54(4):653-664.  https://doi.org/10.1053/j.ajkd.2009.05.009
  28. Floege J, Hackmann B, Kliem V, Kriz W, Alpers CE, Johnson RJ, Kühn KW, Koch KM, Brunkhorst R. Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease. Kidney Int. 1997;51(1):230-243.  https://doi.org/10.1038/ki.1997.28
  29. Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND. The Wilms’ tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet. 2004;13(4): 463-471.  https://doi.org/10.1093/hmg/ddh040
  30. Dudnakova T, Spraggon L, Slight J, Hastie N. Actin: a novel interaction partner of WT1 influencing its cell dynamic properties. Oncogene. 2010;29(7):1085-1092. https://doi.org/10.1038/onc.2009.444
  31. Lu CC, Wang GH, Lu J, Chen PP, Zhang Y, Hu ZB, Ma KL. Role of podocyte injury in glomerulosclerosis. Adv Exp Med Biol. 2019;1165:195-232.  https://doi.org/10.1007/978-981-13-8871-2_10
  32. Li ZH, Guo XY, Quan XY, Yang C, Liu ZJ, Su HY, An N, Liu HF. The role of parietal epithelial cells in the pathogenesis of podocytopathy. Front Physiol. 2022;13:832772. https://doi.org/10.3389/fphys.2022.832772
  33. Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med. 2021;19(1):441.  https://doi.org/10.1186/s12967-021-03101-z

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.