The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sotnikova T.N.

I.V. Davydovsky City Clinical Hospital;
Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery

Malkov P.G.

I.V. Davydovsky City Clinical Hospital;
Lomonosov Moscow State University

Danilova N.V.

Lomonosov Moscow State University

Relationship between PD-L1 expression and tumor stem cell marker CD44 as a promising basis for the development of new approaches to cancer targeted therapy

Authors:

Sotnikova T.N., Malkov P.G., Danilova N.V.

More about the authors

Read: 2837 times


To cite this article:

Sotnikova TN, Malkov PG, Danilova NV. Relationship between PD-L1 expression and tumor stem cell marker CD44 as a promising basis for the development of new approaches to cancer targeted therapy. Russian Journal of Archive of Pathology. 2023;85(6):70‑75. (In Russ.)
https://doi.org/10.17116/patol20238506170

Recommended articles:
Frequency of MSI, PD-L1 (CPS), HER2 in poorly cohe­sive gastric carcinomas. Russian Journal of Archive of Pathology. 2025;(2):11-17

References:

  1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264.  https://doi.org/10.1038/nrc3239
  2. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109-1117. https://doi.org/10.1016/s0140-6736(14)60958-2
  3. Zhang C, Wang H, Wang X, Zhao C, Wang H. CD44, a marker of cancer stem cells, is positively correlated with PD-L1 expression and immune cells infiltration in lung adenocarcinoma. Cancer Cell Int. 2020;20(1):583.  https://doi.org/10.1186/s12935-020-01671-4
  4. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480-489.  https://doi.org/10.1038/nature10673
  5. Bai R, Chen N, Li L, Du N, Bai L, Lv Z, Tian H, Cui J. Mechanisms of cancer resistance to immunotherapy. Front Oncol. 2020; 10:1290. https://doi.org/10.3389/fonc.2020.01290
  6. Cho H, Matsumoto S, Fujita Y, Kuroda A, Menju T, Sonobe M, Kondo N, Torii I, Nakano T, Lara PN, et al. Trametinib plus 4-methylumbelliferone exhibits antitumor effects by ERK blockade and CD44 downregulation and affects PD-1 and PD-L1 in malignant pleural mesothelioma. J Thorac Oncol. 2017;12(3):477-490.  https://doi.org/10.1016/j.jtho.2016.10.023
  7. Lee YH, Yoon HY, Shin JM, Saravanakumar G, Noh KH, Song KH, Jeon JH, Kim DW, Lee KM, Kim K, et al. A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. J Control Release. 2015;199:98-105.  https://doi.org/10.1016/j.jconrel.2014.12.007
  8. Shin JM, Oh SJ, Kwon S, Deepagan VG, Lee M, Song SH, Lee  HJ, Kim S, Song KH, Kim TW, et al. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J Control Release. 2017;267:181-190.  https://doi.org/10.1016/j.jconrel.2017.08.032
  9. Makrydimas G, Zagorianakou N, Zagorianakou P, Agnantis NJ. CD44 family and gynaecological cancer. In Vivo. 2003;17(6): 633-640. 
  10. Sleeman J, Moll J, Sherman L, Dall P, Pals ST, Ponta H, Herrlich P. The role of CD44 splice variants in human metastatic cancer. Ciba Found Symp. 1995;189:142-151; discussion 151-156, 174-176.  https://doi.org/10.1002/9780470514719.ch11
  11. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res. 1997; 71:241-319.  https://doi.org/10.1016/s0065-230x(08)60101-3
  12. Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol. 2020;9(1):36.  https://doi.org/10.1186/s40164-020-00192-0
  13. Hasegawa S. Extrapleural pneumonectomy or pleurectomy/decortication for malignant pleural mesothelioma. Gen Thorac Cardiovasc Surg. 2014;62(9):516-521.  https://doi.org/10.1007/s11748-014-0389-7
  14. Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res. 2009;15(24):7462-7468. https://doi.org/10.1158/1078-0432.ccr-09-0479
  15. Davidson B, Goldberg I, Gotlieb WH, Ben-Baruch G, Kopolovic J. CD44 expression in uterine cervical intraepithelial neoplasia and squamous cell carcinoma: an immunohistochemical study. Eur J Gynaecol Oncol. 1998;19(1):46-49. 
  16. Callagy G, O’Grady A, Butler D, Leader M, Kay E. Expression of CD44 in uterine cervical squamous neoplasia: a predictor of microinvasion? Gynecol Oncol. 2000;76(1):73-79.  https://doi.org/10.1006/gyno.1999.5661
  17. Brungs D, Lochhead A, Iyer A, Illemann M, Colligan P, Hirst NG, Splitt A, Liauw W, Vine KL, Pathmanandavel S, et al. Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology. 2019;51(5):474-480.  https://doi.org/10.1016/j.pathol.2019.03.009
  18. Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32(1):145-156.  https://doi.org/10.1002/stem.1556
  19. Lupia M, Cavallaro U. Ovarian cancer stem cells: still an elusive entity? Mol Cancer. 2017;16(1):64.  https://doi.org/10.1186/s12943-017-0638-3
  20. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(1):195-211.e10.  https://doi.org/10.1016/j.immuni.2018.12.021
  21. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033-1043. https://doi.org/10.5966/sctm.2015-0048
  22. Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8+ T cell infiltration and high PD-L1 expression are associated with level of CD44+/CD133+ cancer stem cells and predict an unfavorable prognosis in pancreatic cancer. Cancers (Basel). 2019;11(4):541.  https://doi.org/10.3390/cancers11040541
  23. Alsuliman A, Colak D, Al-Harazi O, Fitwi H, Tulbah A, Al-Tweigeri T, Al-Alwan M, Ghebeh H. Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in claudin-low breast cancer cells. Mol Cancer. 2015;14:149.  https://doi.org/10.1186/s12943-015-0421-2
  24. Alwosaibai K, Aalmri S, Mashhour M, Ghandorah S, Alshangiti A, Azam F, Selwi W, Gharaibeh L, Alatawi Y, Alruwaii Z, et al. PD-L1 is highly expressed in ovarian cancer and associated with cancer stem cells populations expressing CD44 and other stem cell markers. BMC Cancer. 2023;23(1):13.  https://doi.org/10.1186/s12885-022-10404-x
  25. Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY, Sunwoo JB. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res. 2016;22(14):3571-3581. https://doi.org/10.1158/1078-0432.ccr-15-2665
  26. Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H, et al. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. 2019;450:1-13.  https://doi.org/10.1016/j.canlet.2019.02.022
  27. Moutafi MK, Molero M, Martinez Morilla S, Baena J, Vathiotis IA, Gavrielatou N, Castro-Labrador L, de Garibay GR, Adradas V, Orive D, et al. Spatially resolved proteomic profiling identifies tumor cell CD44 as a biomarker associated with sensitivity to PD-1 axis blockade in advanced non-small-cell lung cancer. J Immunother Cancer. 2022;10(8):e004757. https://doi.org/10.1136/jitc-2022-004757
  28. Unver N, Tavukcuoglu E, Esendagli G. Tailored modulation of stemness and drug resistance marker characteristics in K-Ras mutant lung cancer cells via PD-L1 gene suppression. Life Sci. 2022;311(Pt B):121171. https://doi.org/10.1016/j.lfs.2022.121171
  29. Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, Bramley R, Cliffe NC, Xue Y, Kuasne H, et al. CD44 promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers. Cancer Res. 2020;80(3):444-457.  https://doi.org/10.1158/0008-5472.CAN-19-1108
  30. De Falco V, Tamburrino A, Ventre S, Castellone MD, Malek M, Manié SN, Santoro M. CD44 proteolysis increases CREB phosphorylation and sustains proliferation of thyroid cancer cells. Cancer Res. 2012;72(6):1449-1458. https://doi.org/10.1158/0008-5472.CAN-11-3320
  31. Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol. 2001;155(5):755-762.  https://doi.org/10.1083/jcb.200108159
  32. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259-273.  https://doi.org/10.1016/j.ccr.2007.01.013
  33. Zhang G, Guo L, Yang C, Liu Y, He Y, Du Y, Wang W, Gao F. A novel role of breast cancer-derived hyaluronan on inducement of M2-like tumor-associated macrophages formation. Oncoimmunology. 2016;5(6):e1172154. https://doi.org/10.1080/2162402x.2016.1172154
  34. Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti M, Craig AW, Graham CH. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget. 2016;7(9):10557-10567. https://doi.org/10.18632/oncotarget.7235
  35. Haegel-Kronenberger H, de la Salle H, Bohbot A, Galon J, Tartour E, Cazenave JP, Hanau D. Regulation of CD44 isoform expression and CD44-mediated signaling in human dendritic cells. Adv Exp Med Biol. 1997;417:83-90.  https://doi.org/10.1007/978-1-4757-9966-8_14
  36. Yang M, Liu Y, Ren G, Shao Q, Gao W, Sun J, Wang H, Ji C, Li X, Zhang Y, et al. Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep. 2015;5:13674. https://doi.org/10.1038/srep13674
  37. Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23(7-8):605-618.  https://doi.org/10.3109/1061186x.2015.1052072
  38. Cheng Y, Wang C, Wang H, Zhang Z, Yang X, Dong Y, Ma L, Luo J. Combination of an autophagy inhibitor with immunoadjuvants and an anti-PD-L1 antibody in multifunctional nanoparticles for enhanced breast cancer immunotherapy. BMC Med. 2022; 20(1):411.  https://doi.org/10.1186/s12916-022-02614-8
  39. Kim S, Heo R, Song SH, Song KH, Shin JM, Oh SJ, Lee HJ, Chung JE, Park JH, Kim TW. PD-L1 siRNA-hyaluronic acid conjugate for dual-targeted cancer immunotherapy. J Control Release. 2022;346:226-239.  https://doi.org/10.1016/j.jconrel.2022.04.023
  40. Lee JC, Wu ATH, Chen JH, Huang WY, Lawal B, Mokgautsi N, Huang HS, Ho CL. HNC0014, a multi-targeted small-molecule, inhibits head and neck squamous cell carcinoma by suppressing c-Met/STAT3/CD44/PD-L1 oncoimmune signature and eliciting antitumor immune responses. Cancers (Basel). 2020;12(12):3759. https://doi.org/10.3390/cancers12123759
  41. Sun F, Zhu Q, Li T, Saeed M, Xu Z, Zhong F, Song R, Huai M, Zheng M, Xie C, et al. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer. Adv Sci (Weinh). 2021;8(4):2002746. https://doi.org/10.1002/advs.202002746
  42. Rios de la Rosa JM, Pingrajai P, Pelliccia M, Spadea A, Lallana E, Gennari A, Stratford IJ, Rocchia W, Tirella A, Tirelli N. Binding and internalization in receptor-targeted carriers: the complex role of CD44 in the uptake of hyaluronic acid-based nanoparticles (siRNA delivery). Adv Healthc Mater. 2019;8(24):e1901182. https://doi.org/10.1002/adhm.201901182
  43. Qian L, Liu F, Chu Y, Zhai Q, Wei X, Shao J, Li R, Xu Q, Yu L, Liu B, et al. MicroRNA-200c nanoparticles sensitized gastric cancer cells to radiotherapy by regulating PD-L1 expression and EMT. Cancer Manag Res. 2020;12:12215-12223. https://doi.org/10.2147/cmar.s279978
  44. Wang X, Gao J, Li C, Xu C, Li X, Meng F, Liu Q, Wang Q, Yu L, Liu B, et al. In situ gelatinase-responsive and thermosensitive nanocomplex for local therapy of gastric cancer with peritoneal metastasis. Mater Today Bio. 2022;15:100305. https://doi.org/10.1016/j.mtbio.2022.100305

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.