The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kondratiev A.N.

Polenov Neurosurgical Institute of thr Ministry of Health of the Russia, 197341, Saint Petersburg, Russia

Tsentsiper L.M.

RNSI n.a. A.L. Polenov at V.A. Almazov North-Western Medical Research Center,

Glymphatic system of the brain: structure and practical significance

Authors:

Kondratiev A.N., Tsentsiper L.M.

More about the authors

Read: 24539 times


To cite this article:

Kondratiev AN, Tsentsiper LM. Glymphatic system of the brain: structure and practical significance. Russian Journal of Anesthesiology and Reanimatology. 2019;(6):72‑80. (In Russ.)
https://doi.org/10.17116/anaesthesiology201906172

Recommended articles:
Characteristics of postmortem changes in the brain. Fore­nsic Medi­cal Expe­rtise. 2024;(6):56-61
Glymphatic system in health and disease: a narrative review. Burdenko's Journal of Neurosurgery. 2025;(4):112-118

References:

  1. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748
  2. Nakada T. Virchow-Robin space and aquaporin-4: new insights on an old friend. Croatian Medical Journal. 2014;55(4):328-336. https://doi.org/10.3325/cmj.2014.55.328
  3. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. American Journal of Roentgenology. 1988;151(3):551-558.
  4. Pollock H, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. Journal of Anatomy. 1997;191(Pt 3):337-346.
  5. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58 (9):1094-1103.
  6. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular Spaces, Glymphatic Dysfunction, and Small Vessel Disease. Clinical Science. 2017;131(17):2257-2274.
  7. Gross PM, Weindl A. Peering through the windows of the brain (Review). Journal of Cerebral Blood Flow and Metabolism. 1987;7(6):663-672. https://doi.org/10.1038/jcbfm.1987.120
  8. Esiri MM, Gay D. Immunological and neuropathological significance of the Virchow—Robin space. Journal of the Neurological Sciences. 1990;100(1-2):3-8. https://doi.org/10.1016/0022-510X(90)90004-7
  9. Agnati LF, Genedani S, Lenzi PL, Leo G, Mora F, Ferré S, Fuxe K. Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis. Journal of Neural Transmission. 2005;112(1):45-63. https://doi.org/10.1007/s00702-004-0180-5
  10. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends in Immunology. 2007;28(1):5-11. https://doi.org/10.1016/j.it.2006.11.007
  11. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology. 2010;9(7):689-701. https://doi.org/10.1016/S1474-4422(10)70104-6
  12. Groeschel S, Chong WK, Surtees R, Hanefeld F. Virchow—Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology. 2006;48(10):745-754. https://doi.org/10.1007/s00234-006-0112-1
  13. Staines DR, Brenu EW, Marshall-Gradisnik S. Postulated role of vasoactive neuropeptide-related immunopathology of the blood brain barrier and Virchow—Robin spaces in the aetiology of neurological-related conditions. Mediators of Inflammation. 2008:ID 792428. https://doi.org/10.1155/2008/792428
  14. Mills S, Cain J, Purandare N, Jackson A. Biomarkers of cerebrovascular disease in dementia. British Journal of Radiology. 2007;80:S128-S145. https://doi.org/10.1259/bjr/79217686
  15. Cherian I, Beltran M, Kasper EM, Bhattarai B, Munokami S, Grasso G. Exploring the Virchow—Robin spaces function: A unified theory of brain diseases. Surgical Neurology International. 2016;7(Suppl 26):S711-S714. https://doi.org/10.4103/2152-7806.192486
  16. Yuhas D. How the brain cleans itself. Nature. 2012. Available at: https://www.nature.com/news/how-the-brain-cleans-itself-1.11216. Accessed August 30, 2019. https://doi.org/10.1038/nature.2012.11216
  17. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nature Reviews Neuroscience. 2003;4(12):991-1001. https://doi.org/10.1038/nrn1252
  18. Verkman AS, Mitra AK. Structure and function of aquaporin water channels. American Journal of Physiology-Renal Physiology. 2000;278(1):F13-28.
  19. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochimica et Biophysica Acta. 2006;1758(8):1085-1093. https://doi.org/10.1016/j.bbamem.2006.02.018
  20. Keep R, Jones H. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Research. Developmental Brain Research. 1990;56(1):47-53.
  21. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiological Reviews. 2013;93(4):1847-1892.
  22. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. Journal of Cell Biology. 1969;40(3):648-677.
  23. Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, Ghersi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSI barrier. Histochemistry and Cell Biology. 2012;138(6):861-879.
  24. Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids and Barriers of the CNS. 2016;13(19):1-69.
  25. Praetorius J, Nielsen S. Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. American Journal of Physiology — Cell Physiology. 2006;291(1):59-67.
  26. Cserr HF. Physiology of the choroid plexus. Physiological Reviews. 1971;51(2):273-311.
  27. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. American Journal of Physiology. 1984;246 (6 Pt 2):F835-844.
  28. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a «paravascular» fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Research. 1985;326(1):47-63. https://doi.org/10.1016/0006-8993(85)91383-6
  29. Rennels ML, Blaumanis OR, Grady PA. Rapid solute transport throughout the brain via paravascular fluid pathways. Advances in Neurology. 1990;52:431-439.
  30. Nikityuk DB, Nikolenko VN, Chava SV. Anatomiya cheloveka: Uchebnik v 2 tomakh. M.: GEOTAR-Media; 2012. (In Russ.)
  31. Dobrovol’skij GF. Ul’trastruktura obolochek i paravazal’nyh struktur arterij golovnogo mozga. M.: Sputnik+; 2014. (In Russ.)
  32. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO. Lymphatic clearance of the brain: rivascular, paravascular and significance for neurodegenerative diseases. Cellular and Molecular Neurobiology. 2016;36(2):181-194. https://doi.org/10.1007/s10571-015-0273-8
  33. Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist. 2018:25(2):155-166. https://doi.org/10.1177/1073858418775027
  34. Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Scientific Reports. 2013;3:2582. https://doi.org/10.1038/srep02582
  35. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: A beginner’s guide. Neurochemical Research. 2015:40:2583-2599. https://doi.org/10.1007/s11064-015-1581-6
  36. Nedergaard M. Garbage truck of the brain. Science. 2013;340:1529-1530. https://doi.org/10.1126/science.1240514
  37. Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH. Interaction between blood-brain barrier and glymphatic system in solute clearance. Neuroscience and Biobehavioral Reviews. 2018;90:26-33.
  38. Plog BA, Nedergaard M. The glymphatic system in CNS health and disease: past, present and future. Annual Review of Pathology. 2018;13:379-394. https://doi.org/10.1146/annurev-pathol-051217-111018
  39. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341.
  40. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine. 2015;212(7):991-999.
  41. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends in Neuroscience. 2016;39(9):581-586.
  42. Bacyinski A, Xu M, Wang W, Hu J. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy. Frontiers in Neuroanatomy. 2017;11:101. https://doi.org/10.3389/fnana.2017.00101
  43. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathology and Applied Neurobiology. 2008;34(2):131-144. https://doi.org/10.1111/j.1365-2990.2007.00926.x
  44. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a «glymphatic» system? Acta Neuropathologica. 2018;135(3):387-407. https://doi.org/10.1007/s00401-018-1812-4
  45. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. Journal of Neuroscience. 2013;33(46):18190-18199.
  46. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism. 2016;37(6):2112-2124.
  47. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M, Takano T, Deane R, Nedergaard M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 2015;6:6807.
  48. Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ. Mechanical stress activates NMDA receptors in the absence of agonists. Scientific Reports. 2017;7(39):6-10.
  49. Breymann CS. Die lymphatischen Abflusswege von Gehirn und Hypophyse im Mausmodell Inaugural (Dissertation zur Erlangung des Doktorgrades fur Zahnheilkunde der Medizinischen FakultKt der Georg-August-Universitat zu Gottingen); 2016.
  50. Roth C, Stitz H, Roth C, Ferbert A, Deinsberger W, Pahl R, Engel H, Kleffmann J. Craniocervical manual lymphatic drainage and its impact on intracranial pressure — a pilot study. European Journal of Neurology. 2016;23(9):1441-1446. https://doi.org/10.1111/ene.13055
  51. Chikly B, Chikly A. Verbindung von Gehirn und Lymphsystem: neue Erkenntnisse und ihre Bedeutung fur die Therapie. Osteopathische Medizin. 2016;17(4):4-9. https://doi.org/10.1016/s1615-9071(16)30080-6
  52. Eide PK, Eidsvaag VA, Nagelhus EA, Hansson HA. Cortical astrogliosis and increased perivascular aquaporin-4 in idiopathic intracranial hypertension. Brain Research. 2016;1644:161-175. https://doi.org/10.1016/j.brainres.2016.05.024
  53. Kiviniemi V, Wang X, Korhonen V, Keinänen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang YF, Hennig J, Nedergaard M. Ultra-fast magnetic resonance encephalography of physiological brain activity — Glymphatic pulsation mechanisms? Journal of Cerebral Blood Flow and Metabolism. 2015;36(6):1033-1045. https://doi.org/10.1177/0271678X15622047
  54. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-377. https://doi.org/10.1126/science.1241224
  55. Von Holstein-Rathlou S, Petersen NC, Nedergaard M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neuroscience Letters. 2018;662:253-258.
  56. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H, Nedergaard M, Deane R. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiology of Disease. 2016;93:215-225. https://doi.org/10.1016/j.nbd.2016.05.015
  57. Ren H, Luo C, Feng Y, Yao X, Shi Z, Liang F, Kang JX, Wan JB, Pei Z, Su H. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. Federation of American Societies for Experimental Biology Journal. 2017;31(1):282-293. https://doi.org/10.1096/fj.201600896
  58. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Annals of Neurology. 2014;76(6):845-861. https://doi.org/10.1002/ana.24271
  59. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, Touze E, Vivien D, Gauberti M. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis? Stroke. 2014;45(10):3092-3096. https://doi.org/10.1161/STROKEAHA.114.006617
  60. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, Nedergaard M. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. Journal of Neuroscience. 2017;37(11):2870-2877. https://doi.org/10.1523/JNEUROSCI.2112-16.2017
  61. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. Journal of Neuroscience. 2014;34(49):16180-16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014
  62. Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, Sadry N, Nedergaard M, Chopp M, Zhang Z. Impairment of the glymphatic system after diabetes. Journal of Cerebral Blood Flow and Metabolism. 2017;37(4):1326-1337. https://doi.org/10.1177/0271678X16654702
  63. Wei F, Song J, Zhang C, Lin J, Xue R, Shan LD, Gong S, Zhang GX, Qin ZH, Xu GY, Wang LH. Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling less. Psychopharmacology. 2019;236(4):1367-1384. https://doi.org/10.1007/s00213-018-5147-6
  64. Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, Banks WA. Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. Journal of Neuroinflammation. 2012;9(1):150.
  65. Kazakos EI, Kountouras J, Polyzos SA, Deretzi G. Novel aspects of defensins’involvement in virus-induced autoimmunity in the central nervous system. Medical Hypotheses. 2017;102(Suppl. C):33-36. https://doi.org/10.1016/j.mehy.2017.02.020
  66. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurology. 2018;17(11):1016-1024. https://doi.org/10.1016/S1474-4422(18)30318-1
  67. Thelin EP, Nelson DW, Bo-Michael Bellander. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochirurgica. 2017;159(2):209-225. https://doi.org/10.1007/s00701-016-3046-3
  68. Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. Journal of Neuroscience. 2015;35:518-526. https://doi.org/10.1523/JNEUROSCI.3742-14.2015
  69. Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neuroscience and Biobehavioral Reviews. 2018;84:316-324. https://doi.org/10.1016/j.neubiorev.2017.08.016
  70. He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W. Sleep restriction impairs blood-brain barrier function. Journal of Neuroscience. 2014;34(44):14697-14706.
  71. Aguirre CC. Sleep deprivation: a mind-body approach. Current Opinion in Pulmonary Medicine. 2016;22(6):583-588. https://doi.org/10.1097/MCP.0000000000000323
  72. Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. European Journal of Neuroscience. 2016;43(10):1298-1306. https://doi.org/10.1111/ejn.13074
  73. Harding A, Robinson S, Crean S, Singhrao SK. Can better management of Periodontal disease delay the onset and progression of Alzheimer’s disease? Journal of Alzheimer’s Disease. 2017;58(2):337-348. https://doi.org/10.3233/JAD-170046
  74. Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, Yoder KK, Hutchins GD, West JD, Tallman EF, Gao S, Foroud TM, Farlow MR, De Jager PL, Bennett DA, Aisen PS, Petersen RC, Jack CR Jr, Toga AW, Green RC, Jagust WJ, Weiner MW, Saykin AJ; Alzheimer’s Disease Neuroimaging Initiative (ADNI). GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain. 2015;138(Pt 10):3076-3088. https://doi.org/10.1093/brain/awv231
  75. Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology. 2018;21(3):137-151. https://doi.org/10.1016/j.cjtee.2018.02.003
  76. Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: A review of epidemiology, pathology and neuroimaging techniques. Journal of Alzheimers Disease and Parkinsonism. 2014;4:137.
  77. Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. Journal of Neuroscience Methods. 2016;272:38-49. https://doi.org/10.1016/j.jneumeth.2016.06.018
  78. Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathologica. 2016;132(3):317-338. https://doi.org/10.1007/s00401-016-1606-5
  79. Liem T. Osteopathic treatment of the dura. In: Liem T, Tozzi P, Chila A, eds. Fascia in the osteopathic field. Edinburgh: Handspring; 2017.
  80. Liem T. Treatment Principles. In: Liem T, Heede P, eds. Foundations of morphodynamics in osteopathy. Edingburgh: Handspring; 2017.
  81. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H. The effect of body posture on brain glymphatic transport. Journal of Neuroscience. 2015;35(31):11034-11044. https://doi.org/10.1523/JNEUROSCI.1625-15.2015
  82. Raichle ME, Hartman BK, Eichling JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proceedings of the National Academy of Sciences of the United States of America. 1975;72(9):3726-3730.
  83. Harik SI. Blood-brain barrier sodium/potassium pump: Modulation by central noradrenergic innervation. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(11):4067-4070.
  84. Groothuis DR, Vavra MW, Schlageter KE, Kang EW, Itskovich AC, Hertzler S, Allen CV, Lipton HL. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. Journal of Cerebral Blood Flow and Metabolism. 2007;27(1):43-56. https://doi.org/10.1038/sj.jcbfm.9600315
  85. Benveniste H, Lee H, Ding F, Sun Q. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology. 2017;127:976-988. https://doi.org/10.1097/ALN.0000000000001888
  86. Raichle ME, Grubb RL. Regulation of brain water permeability by centrally-released vasopressin. Brain Research. 1978;143(1):191-194.
  87. Doczi T, Szerdahelyi P, Gulya K, Kiss J. Brain water accumulation after the central administration of vasopressin. Neurosurgery. 1982;11(3):402-407.
  88. Krieg SM, Sonanini S, Plesnila N, Trabold R. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. Journal of Neurotrauma. 2015;32(4):221-227. https://doi.org/10.1089/neu.2013.3274
  89. Zarow C, Lyness Sa, Mortimer Ja, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Archives of Neurology. 2003;60(3):337-341.
  90. Raskind MA, Peskind ER, Halter JB, Jimerson DC. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Archives of General Psychiatry. 1984;41(4):343-346.
  91. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nature Immunology. 2017;18(2):123-131. https://doi.org/10.1038/ni.3666
  92. Kondrat’ev AN. Sochetannoe vozdejstvie na opioidnuyu i adrenergicheskuyu antinociceptivnye sistemy v anesteziologicheskom obespechenii neǐroonkologicheskih operaciǐ. Avtoref. dis. … d-ra med. nauk. SPb.; 1992. (In Russ.)
  93. Kondratyev AN. Usage of alpha-2 Agonists and Opioids in Neuroanesthesia: Twenty Years of Experience. Seminars in Anesthesia, Perioperative Medicine and Pain. 2004;23(3):192-195.
  94. Kondratyev AN, Tsentsiper LM, Kondrat’eva EA, Nazarov RV. Neurovegetative stabilization as pathogenetic therapy of brain damage. Anesteziologiya i reanimatologiya. 2014;1:82-84. (In Russ.)

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.