The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nikenina E.V.

Anokhin Research Institute of Normal Physiology;
Sechenov First Moscow State Medical University

Abramova A.Yu.

Anokhin Research Institute of Normal Physiology;
Evdokimov Moscow State University of Medicine and Dentistry

Pertsov S.S.

Anokhin Research Institute of Normal Physiology;
Evdokimov Moscow State University of Medicine and Dentistry

Neuroimmune interactions during pain transduction in acute inflammatory pain

Authors:

Nikenina E.V., Abramova A.Yu., Pertsov S.S.

More about the authors

Journal: Russian Journal of Pain. 2021;19(4): 37‑43

Read: 1227 times


To cite this article:

Nikenina EV, Abramova AYu, Pertsov SS. Neuroimmune interactions during pain transduction in acute inflammatory pain. Russian Journal of Pain. 2021;19(4):37‑43. (In Russ.)
https://doi.org/10.17116/pain20211904137

References:

  1. Talbot S, Foster SL, Woolf CJ. Neuroimmunity: Physiology and Pathology. Annu Rev Immunol. 2016;34:421-447.  https://doi.org/10.1146/annurev-immunol-041015-055340
  2. Aich A, Jones MK, Gupta K. Pain and sickle cell disease. Curr Opin Hematol. 2019;26(3):131-138.  https://doi.org/10.1097/MOH.0000000000000491
  3. Pain: a guide for doctors and students. Yahno N.N., ed. M.: MEDpress-inform; 2009. (In Russ.).
  4. Kukushkin ML, Tabeeva GR, Podchufarova EV. Pain syndrome: pathogenesis, clinic, treatment. Yahno N.N., ed. M.: IMA-PRESS; 2011. (In Russ.).
  5. Yakhno NN, Kukushkin ML, Churyukanov MV, Davydov OS, Bakhtadze MA. New definition of pain by the International Association for the Study of Pain. Russian Journal of Pain. 2020;18(4):5-7. (In Russ.). https://doi.org/10.17116/pain2020180415
  6. Lee JY, Lee GJ, Lee PR, Won CH, Kim D, Kang Y, Oh SB. The analgesic effect of refeeding on acute and chronic inflammatory pain. Sci Rep. 2019;9(1):16873. https://doi.org/10.1038/s41598-019-53149-7
  7. Linley JE, Rose K, Ooi L, et al. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflügers Arch Eur J Physiol. 2010;459:657-669.  https://doi.org/10.1007/s00424-010-0784-6
  8. Kessler W, Kirchhoff C, Reeh PW, et al. Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res. 1992;91:467-476.  https://doi.org/10.1007/BF00227842
  9. Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther. 2016;22(2):88-101.  https://doi.org/10.1111/cns.12486
  10. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267-284.  https://doi.org/10.1016/j.cell.2009.09.028
  11. Dib-Hajj SD, Cummins Theodore R., Joel A. Black, Stephen G. Waxman Sodium channels in normal and pathological pain. Annual Review of Neuroscience. 2010;33(1):325-347.  https://doi.org/10.1146/an nurev-neuro-060909-153234
  12. Meyer RA, Ringkamp M, Campbell JN, Srinivasa NR. Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M, eds. Wall and Melzack’s Textbook of pain. Philadelphia: Elsevier Churchill Livingstone; 2006;3-34. 
  13. Yahno NN, Kukushkin ML. Pain: a practical guide for doctors. M.: RAMS Publishing House; 2011. (In Russ.).
  14. Kukushkin ML, Khitrov NK. General pathology of pain. M.: Meditsina; 2004. (In Russ.).
  15. Kehlet H, Dahl JB. Assessment of postoperative pain — need for action! Pain. 2011;152(8):1699-1700. https://doi.org/10.1016/j.pain.2011.03.013
  16. Schlereth T, Birklein F. The Sympathetic Nervous System and Pain. Neuromol Med. 2008;10:141-147.  https://doi.org/10.1007/s12017-007-8018-6
  17. Abramova AYu, Pertsov SS. Lipopolysaccharides and nociperception. Russian Journal of Pain. 2014;2(43):30-38. (In Russ.).
  18. Verma V, Sheikh Z, Ahmed AS. Nociception and role of immune system in pain. Acta Neurol Belg. 2015;115(3):213-220.  https://doi.org/10.1007/s13760-014-0411-y
  19. McMahon SB, La Russa F, Bennett DL. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci. 2015;16(7):389-402.  https://doi.org/10.1038/nrn3946
  20. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267-284.  https://doi.org/10.1016/j.cell.2009.09.028
  21. Kenneth Murphy, Casey Weaver. Janeway’s Immunobiology. New York, Garland Science. 2017;905. 
  22. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol. 2018;39(3):240-255.  https://doi.org/10.1016/j.it.2017.12.003
  23. Nikenina EV, Abramova AYu, Pertsov SS. Neuroimmune aspects of acute inflammatory pain. Russian Journal of Pain. 2021;19(1):56-62. (In Russ.). https://doi.org/10.17116/pain20211901156
  24. Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci. 2006;26(14):3864-3874. https://doi.org/10.1523/JNEUROSCI.5385-05.2006
  25. Wood JN, et al. Voltage-gated sodium channels and pain pathways. J Neurobiol. 2004;61:55-71.  https://doi.org/10.1002/neu.20094
  26. Sekiguchi F, Tsubota M, Kawabata A. Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biol Pharm Bull. 2018;41(8):1127-1134. https://doi.org/10.1248/bpb.b18-00054
  27. Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron. 2014;82(1):47-54.  https://doi.org/10.1016/j.neuron.2014.02.011
  28. Abramov YuB. Immune aspects of central pain mechanisms. Pain. 2009;25(4):2-8. (In Russ.).
  29. Baral P, Udit S, Chiu IM. Pain and immunity: implications for host defence. Nature Reviews Immunology. 2019;19:433-447.  https://doi.org/10.1038/s41577-019-0147-2
  30. Myers RR, Campana WM, Shubayev VI. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today. 2006;11(1-2):8-20.  https://doi.org/10.1016/S1359-6446(05)03637-8
  31. Aich A, Afrin LB, Gupta K. Mast Cell-Mediated Mechanisms of Nociception. Int J Mol Sci. 2015;16(12):29069-29092. https://doi.org/10.3390/ijms161226151
  32. Flannery LE, Henry RJ, Kerr DM, Finn DP, Roche M. FAAH, but not MAGL, inhibition modulates acute TLR3-induced neuroimmune signaling in the rat, independent of sex. J Neurosci Res. 2018;96(6):989-1001. https://doi.org/10.1002/jnr.24120
  33. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji RR, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081-1083. https://doi.org/10.1038/nn.4053
  34. Cao DL, Qian B, Zhang ZJ, Gao YJ, Wu XB. Chemokine receptor CXCR2 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Research Bulletin. 2016;127:219-225.  https://doi.org/10.1016/j.brainresbull.2016.09.016
  35. Kleij HP, Bienenstock J. Significance of Conversation between Mast Cells and Nerves. Allergy Asthma Clin Immunol. 2005;1(2):65-80.  https://doi.org/10.1186/1710-1492-1-2-65
  36. Anaf V, Chapron C, el Nakadi I, de Moor V, Simonart T, Noel JC. Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis. Fertil Steril. 2006;86:1336-1343. https://doi.org/10.1016/j.fertnstert.2006.03.057
  37. Watson JJ, Allen SJ, Dawbarn D. Targeting nerve growth factor in pain: What is the therapeutic potential? BioDrugs. 2008;22:349-359.  https://doi.org/10.2165/0063030-200822060-00002
  38. Vincent L, Vang D, Nguyen J, Gupta M, Luk K, Ericson ME, Simone DA, Gupta K. Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood. 2013;122:1853-1862. https://doi.org/10.1182/blood-2013-04-498105.
  39. Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain. 2007;130:166-176.  https://doi.org/10.1016/j.pain.2007.03.012
  40. Taiwo OB, Kovács KJ, Sun Y, Larson AA. Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice. Pain. 2005;114:131-140.  https://doi.org/10.1016/j.pain.2004.12.002
  41. Klumpp DJ, Rudick CN. Summation model of pelvic pain in interstitial cystitis. Nat Clin Pract Urol. 2008;5:494.  https://doi.org/10.1038/ncpuro1203
  42. Li M, Yang K, Wang X, Xu X, Zhu L, Wang H. Mast cells infiltration and decreased E-cadherin expression in ketamine-induced cystitis. Toxicol Rep. 2015;2:205-209.  https://doi.org/10.1016/j.toxrep.2014.12.003
  43. Rudick CN, Schaeffer AJ, Klumpp DJ. Pharmacologic attenuation of pelvic pain in a murine model of interstitial cystitis. BMC Urol. 2009;9:1471-2490. https://doi.org/10.1186/1471-2490-9-16
  44. Rudick CN, Bryce PJ, Guichelaar LA, Berry RE, Klumpp DJ. Mast cell-derived histamine mediates cystitis pain. PLoS One. 2008;3:e0002096. https://doi.org/10.1371/journal.pone.0002096
  45. Chen MC, Keshavan P, Gregory GD, Klumpp DJ. Rantes mediates TNF-dependent lamina propria mast cell accumulation and barrier dysfunction in neurogenic cystitis. Am J Physiol Ren Physiol. 2007;292:1372-1379. https://doi.org/10.1152/ajprenal.00472.2006
  46. Lv J, Huang Y, Zhu S, Yang G, Zhang Y, Leng J, Bo J, Liu D. MCP-1-induced histamine release from mast cells is associated with development of interstitial cystitis/bladder pain syndrome in rat models. Mediat Inflamm. 2012;2012:9.  https://doi.org/10.1155/2012/358184
  47. Yang W, Rudick CN, Hoxha E, Allsop SA, Dimitrakoff JD, Klumpp DJ. Ca2+/calmodulin-dependent protein kinase II is associated with pelvic pain of neurogenic cystitis. Am J Physiol Ren Physiol. 2012;303:350-356.  https://doi.org/10.1152/ajprenal.00077.2012
  48. Martinov T, Mack M, Sykes A, Chatterjea D. Measuring changes in tactile sensitivity in the hind paw of mice using an electronic von frey apparatus. J Vis Exp. 2013;19:51212. https://doi.org/10.3791/51212
  49. De Toni LGB, Menaldo DL, Cintra ACO, Figueiredo MJ, de Souza AR, Maximiano WMA, Jamur MC, Souza GEP, Sampaio SV. Inflammatory mediators involved in the paw edema and hyperalgesia induced by batroxase, a metalloproteinase isolated from bothrops atrox snake venom. Int Immunopharmacol. 2015;28:199-207.  https://doi.org/10.1016/j.intimp.2015.06.001
  50. Liu T, Bai ZT, Pang XY, Chai ZF, Jiang F, Ji YH. Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion buthus martensi karch venom. Eur J Pharmacol. 2007;575:46-56.  https://doi.org/10.1016/j.ejphar.2007.07.057
  51. Bonavita AG, da Costa AS, Pires AL, Neves-Ferreira AG, Perales J, Cordeiro RS, Martins MA, Silva PM. Contribution of mast cells and snake venom metalloproteinases to the hyperalgesia induced by bothrops jararaca venom in rats. Toxicon. 2006;47:885-893.  https://doi.org/10.1016/j.toxicon.2006.02.017
  52. Oliveira SM, Drewes CC, Silva CR, Trevisan G, Boschen SL, Moreira CG, de Almeida Cabrini D, da Cunha C, Ferreira J. Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol. 2011;672:88-95.  https://doi.org/10.1016/j.ejphar.2011.10.001
  53. Yasuda M, Kido K, Ohtani N, Masaki E. Mast cell stabilization promotes antinociceptive effects in a mouse model of postoperative pain. J Pain Res. 2013;6:161-166.  https://doi.org/10.2147/JPR.S41527
  54. Oliveira SM, Silva CR, Ferreira J. Critical role of protease-activated receptor 2 activation by mast cell tryptase in the development of postoperative pain. Anesthesiology. 2013;118:679-690.  https://doi.org/10.1097/ALN.0b013e31827d415f
  55. Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P inhibits acute, but not subacute, inflammatory pain induced by complete Freund’s adjuvant. Biochem Biophys Res Commun. 2020;533(4):971-975.  https://doi.org/10.1016/j.bbrc.2020.09.113
  56. Adwanikar H, Karim F, Gereau RW 4th. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain. 2004;111(1-2):125-135.  https://doi.org/10.1016/j.pain.2004.06.009
  57. Perin-Martins A, et al. Mechanisms underlying transient receptor potential ankyrin 1 (TRPA1)-mediated hyperalgesia and edema. J Peripher Nerv Syst. 2013;18:62-74.  https://doi.org/10.1111/jns5.12010
  58. Massaad CA, et al. Involvement of substance P, CGRP and histamine in the hyperalgesia and cytokine upregulation induced by intraplantar injection of capsaicin in rats. J Neuroimmunol. 2004;153:171-182.  https://doi.org/10.1016/j.jneuroim.2004.05.007
  59. Parada CA, et al. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience. 2001;102:937-944.  https://doi.org/10.1016/S0306-4522(00)00523-6
  60. Qiu F, et al. Potentiation of acid-sensing ion channel activity by the activation of 5-HT2 receptors in rat dorsal root ganglion neurons. Neuropharmacology. 2012;63:494-500.  https://doi.org/10.1016/j.neuropharm.2012.04.034
  61. Bai ZT, Chen B, Zhang XY, Fan GL, Ji YH. C-fos expression in rat spinal cord induced by scorpion bmk venom via plantar subcutaneous injection. Neurosci Res. 2002;44:447-454.  https://doi.org/10.1016/S0168-0102(02)00177-3
  62. Ji YH, Liu T. The study of sodium channels involved in pain responses using specific modulators. Sheng Li Xue Bao. 2008;60:628-634. 
  63. Zogopoulos P, Vasileiou I, Patsouris E, Theocharis SE. The role of endocannabinoids in pain modulation. Fundam Clin Pharmacol. 2013;27(1):64-80.  https://doi.org/10.1111/fcp.12008
  64. Cao DL, Qian B, Zhang ZJ, Gao YJ, Wu XB. Chemokine receptor CXCR2 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Research Bulletin. 2016;127:219-225.  https://doi.org/10.1016/j.brainresbull.2016.09.016
  65. Binshtok AM, et al. Nociceptors are interleukin-1beta sensors. J Neurosci. 2008;28:14062-14073. https://doi.org/10.1523/JNEUROSCI.3795-08.2008
  66. Cunha FQ, et al. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107:660-664.  https://doi.org/10.1111/j.1476-5381.1992.tb14503.x
  67. Liu XJ, Liu T, Chen G, Wang B, Yu XL, Yin C, Ji RR. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci Rep. 2016;6:28188. https://doi.org/10.1038/srep28188
  68. Liu T, Xu ZZ, Park CK, Berta T, Ji RR. Toll-like receptor 7 mediates pruritus. Nature Neuroscience. 2010;13:1460-1462. https://doi.org/10.1038/nn.2683
  69. Liu T, et al. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. The Journal of Clinical Investigation. 2012;122:2195-2207. https://doi.org/10.1172/JCI45414
  70. Xu ZZ, et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nature Medicine. 2015;21:1326-1331. https://doi.org/10.1038/nm.3978
  71. Li Y, et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2015;35:13487-13500. https://doi.org/10.1523/JNEUROSCI.1956-15.2015
  72. Ochoa-Cortes F, et al. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2010;299:723-732.  https://doi.org/10.1152/ajpgi.00494.2009
  73. Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ, Nussinov R. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway. Sci Rep. 2015;5:13128. https://doi.org/10.1038/srep13128
  74. Ipatova VA, Ponasenko AV, Khutornaya MV, Tsepokina AV, Golovkin AS.. Contribution of Toll-like receptor genes to etiopathogenesis of coronary heart disease. Atherosclerosis. 2014;10(4):10-18. (In Russ.).
  75. White FA, et al. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:14092-14097. https://doi.org/10.1073/pnas.0503496102
  76. Belkouch M, Dansereau MA, Réaux-Le Goazigo A, Van Steenwinckel J, Beaudet N, Chraibi A, Melik-Parsadaniantz S, Sarret P. The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gβγ-dependent mechanism. J Neurosci. 2011;31(50):18381-18390. https://doi.org/10.1523/JNEUROSCI.3386-11.2011
  77. Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol. 2019;10:3009. https://doi.org/10.3389/fimmu.2019.03009
  78. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol. 2017;38(1):5-19.  https://doi.org/10.1016/j.it.2016.10.001
  79. Chen O, Donnelly CR, Ji RR. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol. 2020;62:17-25.  https://doi.org/10.1016/j.conb.2019.11.006
  80. Ebbinghaus M, et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012;64:3897-3907. https://doi.org/10.1002/art.34675
  81. Malsch P, et al. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J Neurosci. 2014;34:9845-9856. https://doi.org/10.1523/JNEUROSCI.5161-13.2014
  82. Fang D, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain. 2015;156:1124-1144. https://doi.org/10.1097/j.pain.0000000000000158
  83. Cunha TM, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102:1755-1760. https://doi.org/10.1073/pnas.0409225102
  84. Richter F, Natura G, Ebbinghaus M, von Banchet GS, Hensellek S, König C, Bräuer R, Schaible HG. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 2012;64(12):4125-4134. https://doi.org/10.1002/art.37695
  85. Eskander MA, et al. Persistent Nociception Triggered by Nerve Growth Factor (NGF) Is Mediated by TRPV1 and Oxidative Mechanisms. J Neurosci. 2015;35:8593-8603. https://doi.org/10.1523/JNEUROSCI.3993-14.2015
  86. Zhang X, et al. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005;24:4211-4223. https://doi.org/10.1038/sj.emboj.7600893
  87. Ro LS, et al. Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain. 1999;79:265-274.  https://doi.org/10.1016/S0304-3959(98)00164-X
  88. Tang X-Q, et al. Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci. 2004;24:819-827.  https://doi.org/10.1523/JNEUROSCI.1263-03.2004
  89. Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res. 2009;336(3):349-384.  https://doi.org/10.1007/s00441-009-0784-z
  90. Coutaux A, Adam F, Willer JC, Le Bars D. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine. 2005;72(5):359-371.  https://doi.org/10.1016/j.jbspin.2004.01.010
  91. Zhu W, Oxford GS. Differential gene expression of neonatal and adult DRG neurons correlates with the differential sensitization of TRPV1 responses to nerve growth factor. Neurosci Lett. 2011;500(3):192-196.  https://doi.org/10.1016/j.neulet.2011.06.034
  92. Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, Morenilla-Palao C, Stirling C, Fitzgerald M, McMahon SB, Rios M, Wood JN; London Pain Consortium. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci. 2006;31(3):539-548.  https://doi.org/10.1016/j.mcn.2005.11.008
  93. Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, Bardoni R. BDNF as a pain modulator. Prog Neurobiol. 2008;85(3):297-317.  https://doi.org/10.1016/j.pneurobio.2008.04.004
  94. Salio C, Lossi L, Ferrini F, Merighi A. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci. 2005;22(8):1951-1966. https://doi.org/10.1111/j.1460-9568.2005.04392.x
  95. Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M. Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol. 2005;569(Pt 2):685-695.  https://doi.org/10.1113/jphysiol.2005.095331
  96. Merighi A, Bardoni R, Salio C, Lossi L, Ferrini F, Prandini M, Zonta M, Gustincich S, Carmignoto G. Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Dev Neurobiol. 2008;68(4):457-75.  https://doi.org/10.1002/dneu.20605

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.