The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Puchkova A.N.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Tkachenko O.N.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Gandina E.O.

Institute of Higher Nervous Activity and Neurophysiology

Shumov D.E.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

High individual stability of daytime sleep EEG characteristics in nighttime sleep restriction settings

Authors:

Puchkova A.N., Tkachenko O.N., Gandina E.O., Shumov D.E.

More about the authors

Read: 690 times


To cite this article:

Puchkova AN, Tkachenko ON, Gandina EO, Shumov DE. High individual stability of daytime sleep EEG characteristics in nighttime sleep restriction settings. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(5‑2):22‑26. (In Russ.)
https://doi.org/10.17116/jnevro202512505222

Recommended articles:
Factors of depression acco­rding to acti­graphy in the fall season. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5-2):27-32

References:

  1. Putilov AA, Sveshnikov DS, Bakaeva ZV, et al. Evening chronotype, insufficient weekday sleep, and weekday-weekend gap in sleep times: What is really to blame for a reduction in self-perceived health among university students? Chronobiology International. 2023;40(7):874-884.  https://doi.org/10.1080/07420528.2023.2222797
  2. Seoane HA, Moschetto L, Orliacq F, et al. Sleep disruption in medicine students and its relationship with impaired academic performance: a systematic review and meta-analysis. Sleep Medicine Reviews. 2020;53:101333. https://doi.org/10.1016/j.smrv.2020.101333
  3. Souabni M, Hammouda O, Romdhani M, et al. Benefits of Daytime Napping Opportunity on Physical and Cognitive Performances in Physically Active Participants: A Systematic Review. Sports Medicine. 2021;51(10):2115-2146. https://doi.org/10.1007/s40279-021-01482-1
  4. Poluektov MG, Narbut AM, Dorokhov VB. Daytime napping and its effects on memory consolidation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(8):127-132. (In Russ.). https://doi.org/10.17116/jnevro2020120081127
  5. Dutheil F, Danini B, Bagheri R, et al. Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021;18(19):10212. https://doi.org/10.3390/ijerph181910212
  6. Gander P, Signal L, Van Dongen HP. Stable inter-individual differences in slow-wave sleep during nocturnal sleep and naps. Sleep and Biological Rhythms. 2010;8(4):239-244.  https://doi.org/10.1111/j.1479-8425.2010.00454.x
  7. Perkinson-Gloor N, Hagmann-von Arx P, Brand S, et al. Intraindividual long-term stability of sleep electroencephalography in school-aged children. Sleep Medicine. 2015;16(11):1348-1351. https://doi.org/10.1016/j.sleep.2015.07.025
  8. De Gennaro L, Marzano C, Fratello F. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Annals of Neurology. 2008;64(4):455-460.  https://doi.org/10.1002/ana.21434
  9. Buckelmüller J, Landolt HP, Stassen HH, et al. Trait-like individual differences in the human sleep electroencephalogram. Neuroscience. 2006;138(1):351-356.  https://doi.org/10.1016/j.neuroscience.2005.11.005
  10. De Gennaro L, Ferrara M, Vecchio F et al. An electroencephalographic fingerprint of human sleep. NeuroImage. 2005;26(1):114-122.  https://doi.org/10.1016/j.neuroimage.2005.01.020
  11. Tan X, Campbell IG, Palagini L, et al. High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biological Psychiatry. 2000;48(10):1010-1019. https://doi.org/10.1016/S0006-3223(00)00873-8
  12. Ong JL, Lo JC., Patanaik A, et al. Trait‐like characteristics of sleep EEG power spectra in adolescents across sleep opportunity manipulations. Journal of Sleep Research. 2019;28(5):e12824. https://doi.org/10.1111/jsr.12824
  13. Mullins AE, Pehel S, Parekh A, et al. The stability of slow-wave sleep and EEG oscillations across two consecutive nights of laboratory polysomnography in cognitively normal older adults. Journal of Sleep Research. 2024;e14281. https://doi.org/10.1111/jsr.14281
  14. Tarokh L, Rusterholz T, Achermann P, et al. The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like. Journal of Sleep Research. 2015;24(4):360-363.  https://doi.org/10.1111/jsr.12279
  15. Gaines J, Vgontzas AN, Fernandez-Mendoza J, et al. Short- and Long-Term Sleep Stability in Insomniacs and Healthy Controls. Sleep. 2015;38(11):1727-1734. https://doi.org/10.5665/sleep.5152
  16. Shi Y, Ren R, Zhang Y, et al. High stability of EEG spectral power across polysomnography and multiple sleep latency tests in good sleepers and chronic insomniacs. Behavioural Brain Research. 2024;463:114913. https://doi.org/10.1016/j.bbr.2024.114913
  17. Poon JJY, Chapman JL, Wong KKH, et al. Intra‐individual stability of NREM sleep quantitative EEG measures in obstructive sleep apnea. Journal of Sleep Research. 2019;28(6):e12838. https://doi.org/10.1111/jsr.12838
  18. Valdez P, Ramírez C, García A. Circadian rhythms in cognitive performance: implications for neuropsychological assessment. ChronoPhysiology and Therapy. 2012;2:81-92.  https://doi.org/10.2147/CPT.S32586
  19. Borbély AA, Daan S, Wirz‐Justice A, et al. The two‐process model of sleep regulation: a reappraisal. Journal of Sleep Research. 2016;25(2):131-143.  https://doi.org/10.1111/jsr.12371
  20. Fushimi A, Hayashi M. Pattern of slow-wave sleep in afternoon naps. Sleep and Biological Rhythms. 2008;6(3):187-189.  https://doi.org/10.1111/j.1479-8425.2008.00350.x
  21. Putilov A, Sveshnikov D, Yakunina E, et al. How to quantify sleepiness during an attempt to sleep? Physiological Measurement. 2024;45(9):5008. https://doi.org/10.1088/1361-6579/ad7930
  22. Puchkova AN, Gandina EO, Tkachenko ON. Individual stability of daytime sleep structure in subjects without sleep disorders. Environment and Human: Ecological Studies. 2024;14(3):376-390. (In Russ.). https://doi.org/10.31862/2500-2961-2024-14-3-376-390
  23. Gramfort A. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience. 2013;7(267). https://doi.org/10.3389/fnins.2013.00267
  24. Liljequist D, Elfving B, Skavberg Roaldsen K. Intraclass correlation — A discussion and demonstration of basic features. PLoS ONE. 2019;14(7):e0219854. https://doi.org/10.1371/journal.pone.0219854
  25. Tucker AM, Dinges DF, Van Dongen HPA. Trait interindividual differences in the sleep physiology of healthy young adults. Journal of Sleep Research. 2007;16(2):170-180.  https://doi.org/10.1111/j.1365-2869.2007.00594.x
  26. Stokes PA, Rath P, Possidente T, et al. Transient oscillation dynamics during sleep provide a robust basis for electroencephalographic phenotyping and biomarker identification. Sleep. 2023;46(1):zsac223. https://doi.org/10.1093/sleep/zsac223
  27. Ambrosius U, Lietzenmaier S, Wehrle R, et al. Heritability of Sleep Electroencephalogram. Biological Psychiatry. 2008;64(4):344-348.  https://doi.org/10.1016/j.biopsych.2008.03.002

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.