The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Alekseeva L.I.

V.A. Nasonova Research Institute of Rheumatology

Byalovsky Yu.Yu.

Ryazan State Medical University

Zagorodniy N.V.

Peoples’ Friendship University of Russia

Ivanova G.E.

Karateev D.E.

M.F. Vladimirsky Moscow Regional Research Clinical Institute

Konchugova T.V.

National Medical Research Center for Rehabilitation and Balneology

Rakitina I.S.

Ryazan State Medical University

Strakhov M.A.

N.I. Pirogov Russian National Research Medical University

Pathophysiological mechanisms of the therapeutic action of alternating electromagnetic fields in the treatment of osteoarticular pathology

Authors:

Alekseeva L.I., Byalovsky Yu.Yu., Zagorodniy N.V., Ivanova G.E., Karateev D.E., Konchugova T.V., Rakitina I.S., Strakhov M.A.

More about the authors

Read: 2354 times


To cite this article:

Alekseeva LI, Byalovsky YuYu, Zagorodniy NV, et al. . Pathophysiological mechanisms of the therapeutic action of alternating electromagnetic fields in the treatment of osteoarticular pathology. Problems of Balneology, Physiotherapy and Exercise Therapy. 2021;98(3):80‑90. (In Russ.)
https://doi.org/10.17116/kurort20219803180

References:

  1. Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB: Inflammation, fracture and bone repair. Bone. 2016;86:119-130. 
  2. Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233:2937-2948.
  3. Selvamurugan N, He Z, Rifkin D, Dabovic B, Partridge NC: Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-beta Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem Cells Int. 2017;2017:2450327.
  4. Fontanesi G, Traina GC, Giancecchi F, Tartaglia I, Rotini R, Virgili B, Cadossi R, Ceccherelli G, Marino AA: Slow healing fractures: can they be prevented? (Results of electrical stimulation in fibular osteotomies in rats and in diaphyseal fractures of the tibia in humans). Ital J Orthop Traumatol. 1986;12:371-385. 
  5. Streit A, Watson BC, Granata JD, Philbin TM, Lin HN, O’Connor JP, Lin S: Effect on Clinical Outcome and Growth Factor Synthesis With Use of Pulsed Electromagnetic Fields for Fifth Metatarsal Nonunion Fracture: A Double-Blind Randomized Study. Foot Ankle Int. 2016;37:919-923. 
  6. Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C: Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 2017;38:406-424. 
  7. Yan JL, Zhou J, Ma HP, Ma XN, Gao YH, Shi WG, Fang QQ, Ren Q, Xian CJ, Chen KM. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol. 2015;404:132-140. 
  8. Leo M, Milena F, Ruggero C, Stefania S, Giancarlo T: Biophysical stimulation in osteonecrosis of the femoral head. Indian J Orthop. 2009;43:17-21. 
  9. Eftekhar NS, Schink-Ascani MM, Mitchell SN, Bassett CA. Osteonecrosis of the femoral head treated by pulsed electromagnetic fields (PEMFs): a preliminary report. Hip. 1983;306-330. 
  10. Nalobina AN, Fyodorova TN, Talamova IG, Kurch NM. Osnovy fizicheskoj reabilitacii. Saratov; 2018. (In Russ.).
  11. Gupta AK, Srivastava KP, Avasthi S. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009;43:156-160. 
  12. Meskens MW, Stuyck JA, Feys H, Mulier JC. Treatment of nonunion using pulsed electromagnetic fields: aretrospective follow-up study. Acta Orthop Belg. 1990;56:483-488. 
  13. Assiotis A, Sachinis, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res. 2012;7:24. 
  14. Chalidis B, Sachinis N, Assiotis A, Maccauro G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24:17-20. 
  15. Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43:127-131. 
  16. Danilova LA, Batocyrenova EG, Vol’hina IV, Ivanov DO, Krasnikova EN, Litvinenko LA, Ramenskaya NP, Chajka NA. Biohimiya. Uchebnik dlya vuzov. Pod red. Danilovoj LA. S. Peterburg: SpecLit; 2020. (In Russ.).
  17. Keri RA, Distelhorst CW, Sharifi N, Berger NA. Hormonal Signaling in Hormonal Effects on Tumors. In: Biology and Medicine: Comprehensive Modern Endocrinology. Ed. Litwack G. Academic Press; 2019.
  18. Tonelli FM, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. Adv Exp Med Biol. 2012;740:891-916. 
  19. Li JK, Lin JC, Liu HC, Sun JS, Ruaan RC, Shih C, Chang WH. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol. 2006;32:769-775. 
  20. Kim MO, Jung H, Kim SC, Park JK, Seo YK. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med. 2015;35:153-160. 
  21. Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17:958-965. 
  22. Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L, Vassalli M, Gavazzo P. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep. 2015;5:13856.
  23. Zhong C, Zhao TF, Xu ZJ, He RX. Effects of electromagnetic fields on bone regeneration in experimental and clinical studies: a review of the literature. Chin Med J (Engl). 2012;125:367-372. 
  24. Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002;7:18-23. 
  25. Cheng G, Zhai Y, Chen K, Zhou J, Han G, Zhu R, Ming L, Song P, Wang J. Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide. 2011;25:316-325. 
  26. Pilla A, Fitzsimmons R, Muehsam D, Wu J, Rohde C, Casper D. Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim Biophys Acta. 2011;1810:1236-1245.
  27. Nelson FR, Zvirbulis R, Pilla AA. Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: a randomized double-blind pilot study. Rheumatol Int. 2013;33:2169-2173.
  28. Fathi E, Farahzadi R. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/beta-catenin signaling pathways. PLoS One. 2017;12:e0173877.
  29. Drenser KA. Wnt signaling pathway in retinal vascularization. Eye Brain. 2016;8:141-146. 
  30. Ramakrishnan AB, Cadigan KM. Wnt target genes and where to find them. F1000Res. 2017;6:746. 
  31. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101. 
  32. Zhai M, Jing D, Tong S, Wu Y, Wang P, Zeng Z, Shen G, Wang X, Xu Q, Luo E. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics. 2016;37(3):152-162.  https://doi.org/10.1002/bem.21961
  33. Jing D, Cai J, Wu Y, Shen G, Li F, Xu Q, Xie K, Tang C, Liu J, Guo W, Wu X, Jiang M, Luo E. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res. 2014;29:2250-2261.
  34. Jing D, Li F, Jiang M, Cai J, Wu Y, Xie K, Wu X, Tang C, Liu J, Guo W, Shen G, Luo E. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/beta-catenin signaling-associated mechanism. PLoS One. 2013;8:e79377.
  35. Lake D, Correa SA, Muller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016;73:4397-4413.
  36. Ehnert S, Falldorf K, Fentz AK, Ziegler P, Schroter S, Freude T, Ochs BG, Stacke C, Ronniger M, Sachtleben J, Nussler AK. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure — Clinical implication possible. Bone Rep. 2015;3:48-56. 
  37. Song MY, Yu JZ, Zhao DM, Wei S, Liu Y, Hu YM, Zhao WC, Yang Y, Wu H. The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Cell Biochem Biophys. 2014;69:47-54. 
  38. Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med. 2016;10:537-545. 
  39. Soda A, Ikehara T, Kinouchi Y, Yoshizaki K. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. J Med Invest. 2008;55:267-278. 
  40. Hong JM, Kang KS, Yi HG, Kim SY, Cho DW. Electromagnetically controllable osteoclast activity. Bone. 2014;62:99-107. 
  41. Yen-Patton GP, Patton WF, Beer DM, Jacobson BS. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol. 1988;134:37-46. 
  42. Hopper RA, VerHalen JP, Tepper O, Mehrara BJ, Detch R, Chang El, Baharestani S, Simon BJ, Gurtner GC. Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism. Bioelectromagnetics. 2009;30:189-197. 
  43. Usanov AD. Izmenenie parametrov zhiznedeyatel’nosti bioob»ektov pod vozdejstviem peremennyh i postoyannyh magnitnyh polej nizkoj intensivnosti. Byulleten’ medicinskih internet-konferencij. 2012;2(6):380-383. (In Russ.).
  44. Rzyanina AV. Effekty vozdejstviya peremennogo magnitnogo polya na harakteristiki zhiznedeyatel’nosti bioob’ektov: Dis. ... kand. fiz-mat. nauk, Saratov. 2010. (In Russ.).
  45. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;2010:218142.
  46. Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000;141:1667-1674.
  47. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, Lowik CW. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545-1553.
  48. Villars F, Bordenave L, Bareille R, Amedee J. Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem. 2000;79:672-685. 
  49. Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18:1231-1233.
  50. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93:335-345. 
  51. Gao Y, Zhang Y, Lu Y, Wang Y, Kou X, Lou Y, Kang Y. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model. Cell Physiol Biochem. 2016;38:319-329. 
  52. Usanov AD. Effekty vozdejstviya magnitnyh polej na bioob»ekty. Saratov. 2014. (In Russ.).
  53. Egorov AN, Dzyuba YuE. Biologicheskoe dejstvie elektromagnitnogo izlucheniya. V sb. nauchnyh trudov I Mezhdunarodnoj nauchno-prakticheskoj konferencii: Aktual’nye problemy bezopasnosti zhiznedeyatel’nosti i ekologii. Pod red. prof. Puzyreva N.M. Tver’. 2015. (In Russ.).
  54. Makrushin VO, Gaposhina TS. Vozdejstvie vrashchayushchegosya magnitnogo polya na modeli vnutrennih struktur organizma. V sb.: Sovremennaya nauka: novye podhody i aktual’nye issledovaniya. Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii. Pod obshchej red. Vostrecova A.I. Neftekamsk: Mir Nauki; 2018. (In Russ.).
  55. Chernyakova YuM, Pinchuk LS, Cvetkova EA, Chernyuk NV. O modelirovanii biofizicheskogo polya sustava v tribologicheskih eksperimentah in vitro. Trenie i iznos. 2010;31:5. (In Russ.).
  56. Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop Relat Res. 2001;265-279. 
  57. Kang KS, Hong JM, Seol YJ, Rhie JW, Jeong YH, Cho DW. Short-term evaluation of electromagnetic field pretreatment of adipose-derived stem cells to improve bone healing. J Tissue Eng Regen Med. 2015;9:1161-1171.
  58. Ding S, Peng H, Fang HS, Zhou JL, Wang Z. Pulsed electromagnetic fields stimulation prevents steroid- induced osteonecrosis in rats. BMC Musculoskelet Disord. 2011;12:215. 
  59. Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res. 2000;18:637-646. 
  60. Bodamyali T, Bhatt B, Hughes FJ, Winrow VR, Kanczler JM, Simon B, Abbott J, Blake DR, Stevens CR. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun. 1998;250:458-461. 
  61. Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, Ma HP, Xian CJ, Chen KM. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone. 2011;49:753-761. 
  62. Xie YF, Shi WG, Zhou J, Gao YH, Li SF, Fang QQ, Wang MG, Ma HP, Wang JF, Xian CJ, Chen KM. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone. 2016;93:22-32. 
  63. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC. Effects of BMP-2 and pulsed electromagnetic field (ПЕМП) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res. 2007;25:1213-1220.
  64. Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res. 2008;26:1250-1255.
  65. Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Mattei M. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 2014;35:426-436. 
  66. Yang HJ, Kim RY, Hwang SJ. Pulsed Electromagnetic Fields Enhance Bone Morphogenetic Protein-2 Dependent-Bone Regeneration. Tissue Eng Part A. 2015;21:2629-2637.
  67. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718-746. 
  68. Guo Y, Tang CY, Man XF, Tang HN, Tang J, Zhou CL, Tan SW, Wang M, Feng YZ, Zhou HD. Insulin-like growth factor-1 promotes osteogenic differentiation and collagen I alpha 2 synthesis via induction of mRNA- binding protein LARP6 expression. Dev Growth Differ. 2017;59:94-103. 
  69. Zhou J, Ma XN, Gao YH, Yan JL, Shi WG, Xian CJ, Chen KM. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro. Electromagn Biol Med. 2016;35:75-83. 
  70. Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, Biscione R, Massari L, Fini M, De Mattei M. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics. 2011;32:543-551. 
  71. Esmail MY, Sun L, Yu L, Xu H, Shi L, Zhang J. Effects of ПЕМП and glucocorticoids on proliferation and differentiation of osteoblasts. Electromagn Biol Med. 2012;31:375-381. 
  72. Bagheri L, Pellati A, Rizzo P, Aquila G, Massari L, De Mattei M, Ongaro A. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med. 2017;12(2):304-315.  https://doi.org/10.1002/term.2455
  73. Fang QQ, Li ZZ, Zhou J, Shi WG, Yan JL, Xie YF, Chen KM. Low-frequency pulsed electromagnetic fields promotes rat osteoblast differentiation in vitro through cAMP/PKA signal pathway. Nan Fang Yi Ke Da Xue Xue Bao. 2016;36:1508-1513.
  74. Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K, Vincenzi F, Massari L, Cadossi M. Functional tissue engineering in articular cartilage repair: is there a role for electromagnetic biophysical stimulation? Tissue Eng Part B Rev. 2013;19:353-367. 
  75. Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’Cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE. Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem. 2007;102:1504-1518.
  76. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res. 2009;24:425-436. 

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.