The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kim O.T.

National Medical Research Center for Therapy and Preventive Medicine

Dadaeva V.A.

National Medical Research Center for Therapy and Preventive Medicine

Lebedeva D.I.

Tyumen State Medical University

Drapkina O.M.

National Medical Research Center for Therapy and Preventive Medicine;
Russian University of Medicine

The role of adiposopathy in the development of obesity-related diseases

Authors:

Kim O.T., Dadaeva V.A., Lebedeva D.I., Drapkina O.M.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2025;28(2): 96‑102

Read: 374 times


To cite this article:

Kim OT, Dadaeva VA, Lebedeva DI, Drapkina OM. The role of adiposopathy in the development of obesity-related diseases. Russian Journal of Preventive Medicine. 2025;28(2):96‑102. (In Russ.)
https://doi.org/10.17116/profmed20252802196

References:

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews. Endocrinology. 2019;15(5):288-298.  https://doi.org/10.1038/s41574-019-0176-8
  2. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology. 2018;15(9):505-522.  https://doi.org/10.1038/s41569-018-0064-2
  3. Caprio, Sonia, Pierpont, Bridget and Kursawe, Romy. The “adipose tissue expandability” hypothesis: a potential mechanism for insulin resistance in obese youth. Hormone Molecular Biology and Clinical Investigation, 2018; 33(2):20180005. https://doi.org/10.1515/hmbci-2018-0005
  4. Moreno-Indias I, Tinahones FJ. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. Journal of Diabetes Research. 2015;2015:970375. https://doi.org/10.1155/2015/970375
  5. Lightbourne M, Brown RJ. Genetics of Lipodystrophy. Endocrinology and Metabolism Clinics of North America. 2017;46(2):539-554.  https://doi.org/10.1016/j.ecl.2017.01.012
  6. Blüher M. Metabolically Healthy Obesity. Endocrine Reviews. 2020;41(3): 405-420.  https://doi.org/10.1210/endrev/bnaa004
  7. Skat-Rørdam J, Højland Ipsen D, Lykkesfeldt J, et. al. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. Basic and Clinical Pharmacology and Toxicology. 2019;124(5):528-537.  https://doi.org/10.1111/bcpt.13190
  8. Engin AB. What Is Lipotoxicity? Advances in Experimental Medicine and Biology. 2017;960:197-220.  https://doi.org/10.1007/978-3-319-48382-5_8
  9. Mittal B. Subcutaneous adipose tissue & visceral adipose tissue. The Indian Journal of Medical Research. 2019;149(5):571-573.  https://doi.org/10.4103/ijmr.IJMR_1910_18
  10. Mancuso P, Bouchard B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Frontiers in Endocrinology. 2019;10:137.  https://doi.org/10.3389/fendo.2019.00137
  11. Booth A, Magnuson A, Fouts J, et. al. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Hormone Molecular Biology and Clinical Investigation. 2016;26(1):25-42.  https://doi.org/10.1515/hmbci-2015-0073
  12. Muir LA, Neeley CK, Meyer KA, et. al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring). 2016;24(3):597-605.  https://doi.org/10.1002/oby.21377
  13. Strieder-Barboza C, Baker NA, Flesher CG, et. al. Depot-specific adipocyte-extracellular matrix metabolic crosstalk in murine obesity. Adipocyte. 2020;9(1):189-196.  https://doi.org/10.1080/21623945.2020.1749500
  14. Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet. Diabetes and Endocrinology. 2020;8(7):616-627.  https://doi.org/10.1016/S2213-8587(20)30110-8
  15. Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. Journal of Clinical Investigation. 2019;129(10): 4022-4031. https://doi.org/10.1172/JCI129191
  16. Chang E, Varghese M, Singer K. Gender and Sex Differences in Adipose Tissue. Current Diabetes Reports. 2018;18(9):69.  https://doi.org/10.1007/s11892-018-1031-3
  17. Wu Y, Lee MJ, Ido Y, et. al. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. American Journal of Physiology. Endocrinology and Metabolism. 2017;312(1): E58-E71.  https://doi.org/10.1152/ajpendo.00128.2016
  18. Andersson DP, Arner E, Hogling DE, et. al. Abdominal subcutaneous adipose tissue cellularity in men and women. International Journal of Obesity. 2017;41(10):1564-1569. https://doi.org/10.1038/ijo.2017.148
  19. Frank AP, de Souza Santos R, Palmer BF, et. al. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. Journal of Lipid Research. (2018) 10:jlr.R086975. https://doi.org/10.1194/jlr.R086975
  20. Kempegowda P, Melson E, Manolopoulos KN, et. al. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Therapeutic Advances in Endocrinology and Metabolism. 2020;11:2042018820934319. https://doi.org/10.1177/2042018820934319
  21. Hersoug LG, Møller P, Loft S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutrition Research Reviews. 2018;31(2):153-163.  https://doi.org/10.1017/S0954422417000269
  22. Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochimica et Biophysica Acta. 2014;1842(3):393-401.  https://doi.org/10.1016/j.bbadis.2013.05.007
  23. Thiam AR, Dugail I. Lipid droplet-membrane contact sites — from protein binding to function. Journal of Cell Science. 2019;132(12):jcs230169. https://doi.org/10.1242/jcs.230169
  24. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids. 2017;1862(10 Pt B):1221-1232. https://doi.org/10.1016/j.bbalip.2017.07.009
  25. Hansen JS, de Maré S, Jones HA, et. al. Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Scientific Reports. 2017; 7(1):15011. https://doi.org/10.1038/s41598-017-15059-4
  26. Najt CP, Lwande JS, McIntosh AL, Senthivinayagam S, et. al. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry. 2014;53(45):7051-7066. https://doi.org/10.1021/bi500918m
  27. Laurens C, Bourlier V, Mairal A, et. al. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Scientific Reports. 2016;6:38310. https://doi.org/10.1038/srep38310
  28. Demine S, Tejerina S, Bihin B, Thiry M, et. al. Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. Journal of Cellular Physiology. 2018;233(2): 1247-1265. https://doi.org/10.1002/jcp.25994
  29. Mullins GR, Wang L, Raje V, Sherwood SG, et. al. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(49):17450-17455. https://doi.org/10.1073/pnas.1410530111
  30. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049-1061. https://doi.org/10.1016/j.metabol.2016.02.014
  31. Ferraù F, Korbonits M. Metabolic Syndrome in Cushing’s Syndrome Patients. Frontiers of Hormone Research. 2018;49:85-103.  https://doi.org/10.1159/000486002
  32. Chen FJ, Yin Y, Chua BT, et. al. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic. 2020;21(1):94-105.  https://doi.org/10.1111/tra.12717
  33. Gao G, Chen FJ, Zhou L, et. al. Control of lipid droplet fusion and growth by CIDE family proteins. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids. 2017;1862(10 Pt B):1197-1204. https://doi.org/10.1016/j.bbalip.2017.06.009
  34. Nishimoto Y, Tamori Y. CIDE Family-Mediated Unique Lipid Droplet Morphology in White Adipose Tissue and Brown Adipose Tissue Determines the Adipocyte Energy Metabolism. Journal of Atherosclerosis and Thrombosis. 2017;24(10):989-998.  https://doi.org/10.5551/jat.RV17011
  35. Karki S. FSP27 and Links to Obesity and Diabetes. Current Obesity Reports. 2019;8(3):255-261.  https://doi.org/10.1007/s13679-019-00343-3
  36. Haddad D, Al Madhoun A, Nizam R, et. al. Role of Caveolin-1 in Diabetes and Its Complications. Oxidative Medicine and Cellular Longevity. 2020;2020:9761539. https://doi.org/10.1155/2020/9761539
  37. Zhou SR, Guo L, Wang X, et. al. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue. Molecular and Cellular Biology. 2017;37(16): e00058-17.  https://doi.org/10.1128/MCB.00058-17
  38. Huang ZH, Reardon CA, Getz GS, et. al. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation. Journal of Lipid Research. 2015;56(2):215-226.  https://doi.org/10.1194/jlr.M050567
  39. Dong XC. PNPLA3-A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease. Frontiers in Medicine. 2019;6:304.  https://doi.org/10.3389/fmed.2019.00304
  40. Luna-Luna M, Medina-Urrutia A, Vargas-Alarcón G, et. al. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis. Archives of Medical Research. 2015;46(5):392-407.  https://doi.org/10.1016/j.arcmed.2015.05.007
  41. Zhang T, Chen J, Tang X, et. al. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids in Health and Disease. 2019;18(1):223.  https://doi.org/10.1186/s12944-019-1170-9
  42. van Dam AD, Boon MR, Berbée JFP, et. al. Targeting white, brown and perivascular adipose tissue in atherosclerosis development. European Journal of Pharmacology. 2017;816:82-92.  https://doi.org/10.1016/j.ejphar.2017.03.051
  43. Iqbal F, Baker WS, Khan MI, et. al. Current and future therapies for addressing the effects of inflammation on HDL cholesterol metabolism. British Journal of Pharmacology. 2017;174(22):3986-4006. https://doi.org/10.1111/bph.13743
  44. Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascular Pharmacology. 2019;112:54-71.  https://doi.org/10.1016/j.vph.2018.08.002
  45. Goo YH, Son SH, Kreienberg PB, Paul A. Novel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(2):386-396.  https://doi.org/10.1161/ATVBAHA.113.302448
  46. Paul A, Chang BH, Li L, Yechoor VK, et. al. Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circulation Research. 2008;102(12):1492-1501. https://doi.org/10.1161/CIRCRESAHA.107.168070
  47. Younossi ZM, Marchesini G, Pinto-Cortez H, et. al. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation. 2019;103(1):22-27.  https://doi.org/10.1097/TP.0000000000002484
  48. Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Translational Gastroenterology and Hepatology. 2020;5:16.  https://doi.org/10.21037/tgh.2019.09.08
  49. Liu Z, Chen T, Lu X, et. al. Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: a laboratory investigation in vitro and in vivo. American Journal of Translational Research. 2016;8(3):1319-1338.
  50. Hayward GC, Fenech RK, Yang AJ, et. al. The role of PLIN protein in healthy lipid storage and lipid droplet expansion. Journal of Physiology. 2017;595(24):7273-7274. https://doi.org/10.1113/JP275346
  51. Orlicky DJ, Libby AE, Bales ES, et. al. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. Journal of Physiology. 2019;597(6): 1565-1584. https://doi.org/10.1113/JP277140
  52. Bhatt-Wessel B, Jordan TW, Miller JH, et. al. Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics. 2018;655:1-11.  https://doi.org/10.1016/j.abb.2018.08.001
  53. Zhang X, Wang Y, Liu P. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease. Protein and Cell. 2017;8(1):4-13.  https://doi.org/10.1007/s13238-016-0327-9
  54. Kintscher U, Foryst-Ludwig A, Haemmerle G, et. al. The Role of Adipose Triglyceride Lipase and Cytosolic Lipolysis in Cardiac Function and Heart Failure. Cell Reports. Medicine. 2020;1(1):100001. https://doi.org/10.1016/j.xcrm.2020.100001
  55. Zheng P, Xie Z, Yuan Y, et. al. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Scientific Reports. 2017;7:42574. https://doi.org/10.1038/srep42574
  56. Varghese M, Kimler VA, Ghazi FR et al. Adipocyte lipolysis affects Perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface. Scientific Reports. 2019;9(1):4734. https://doi.org/10.1038/s41598-019-41329-4
  57. Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2017;312(5):R739-R752. https://doi.org/10.1152/ajpregu.00002.2017
  58. Ferdaoussi M, MacDonald PE. Toward Connecting Metabolism to the Exocytotic Site. Trends in Cell Biology. 2017;27(3):163-171.  https://doi.org/10.1016/j.tcb.2016.10.003

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.