The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Arkhipov S.A.

Novosibirsk State Medical University;
Federal Research Center of Fundamental and Translational Medicine

Arkhipova V.V.

Novosibirsk State Medical University

Proskura A.V.

Federal Research Center of Fundamental and Translational Medicine

Mangazeeva E.D.

Novosibirsk State Medical University;
Federal Research Center of Fundamental and Translational Medicine

Autenshlyus A.I.

Novosibirsk State Medical University;
Federal Research Center of Fundamental and Translational Medicine

Prognostic significance of molecular markers in assessing the risk of cancer development in patients with non-malignant breast diseases

Authors:

Arkhipov S.A., Arkhipova V.V., Proskura A.V., Mangazeeva E.D., Autenshlyus A.I.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2025;28(1): 69‑75

Read: 474 times


To cite this article:

Arkhipov SA, Arkhipova VV, Proskura AV, Mangazeeva ED, Autenshlyus AI. Prognostic significance of molecular markers in assessing the risk of cancer development in patients with non-malignant breast diseases. Russian Journal of Preventive Medicine. 2025;28(1):69‑75. (In Russ.)
https://doi.org/10.17116/profmed20252801169

References:

  1. Roman M, Louro J, Posso M, et al. Long-Term Risk of Breast Cancer after Diagnosis of Benign Breast Disease by Screening Mammography. International Journal of Environmental Research and Public Health. 2022;19:2625. https://doi.org/10.3390/ijerph19052625
  2. Kim S, Xuan T, Song H, et al. Mammographic breast density, benign breast disease, and subsequent breast cancer risk in 3.9 million Korean women. Radiology. 2022;304:534-541.  https://doi.org/10.1148/radiol.212727
  3. Salamat F, Niakan B, Keshtkar A, et al. Subtypes of Benign Breast Disease as a Risk Factor of Breast Cancer: A Systematic Review and Meta Analyses. Iranian Journal of Medical Sciences. 2018;43(4):355-364. 
  4. Posso M, Alcantara R, Vazquez I, et al. Mammographic features of benign breast lesions and risk of subsequent breast cancer in women attending breast cancer screening. European Radiology. 2022;32:621-629.  https://doi.org/10.1007/s00330-021-08118-y
  5. Visscher DW, Nassar A, Degnim AC, et al. Sclerosing adenosis and risk of breast cancer. Breast Cancer Research and Treatment. 2014;1:205-212.  https://doi.org/10.1007/s10549-014-2862-5
  6. Aroner SA, Collins LC, Connolly JL, et al. Radial scars and subsequent breast cancer risk: results from the Nurses’ Health Studies. Breast Cancer Research and Treatment. 2013;1:277-285.  https://doi.org/10.1007/s10549-013-2535-9
  7. Castells X, Domingo L, Corominas JM, et al. Breast cancer risk after diagnosis by screening mammography of nonproliferative or proliferative benign breast disease: a study from a population based screening program. Breast Cancer Research and Treatment. 2015;1:237-244.  https://doi.org/10.1007/s10549-014-3208-z
  8. Mendez MJ, Hoffman MJ, Cherry EM, et al. Cell Fate Forecasting: A Data-Assimilation Approach to Predict Epithelial-Mesenchymal Transition. Biophysical Journal. 2020;118(7):1749-1768. https://doi.org/10.1016/j.bpj.2020.02.011
  9. Prieto-Garcia E, Diaz-Garcia CV, Garcia-Ruiz I, et al. Epithelial-to-mesenchymal transition in tumor progression. Medical Oncology. 2017;34(7):122.  https://doi.org/10.1007/s12032-017-0980-8
  10. Sung JY, Cheong JH Pan-Cancer Analysis Reveals Distinct Metabolic Reprogramming in Different Epithelial-Mesenchymal Transition Activity States. Cancers (Basel). 2021;13(8):1778. https://doi.org/10.3390/cancers13081778
  11. Rai H, Ahmed J. N-Cadherin: A Marker of Epithelial to Mesenchymal Transition in Tumor Progression. The Internet Journal of Oncology. 2014;10(1):1-8. 
  12. Markopoulos GS, Roupakia E, Marcu KB, et al. Epigenetic regulation of inflammatory cytokine-induced epithelial-to-mesenchymal cell transition and cancer stem cell generation. Cells. 2019;8(10):1143. https://doi.org/10.3390/cells8101143
  13. Rostoker R, Abelson S, Genkin I, et al. CD24(+) cells fuel rapid tumor growth and display high metastatic capacity. Breast Cancer Research. 2015; 17(1):78.  https://doi.org/10.1186/s13058-015-0589-9
  14. Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology. 2011;64(11):937-946.  https://doi.org/10.1136/jcp.2011.090456
  15. Da Cruz Paula A, Lopes C. Implications of Different Cancer Stem Cell Phenotypes in Breast Cancer. Anticancer Research. 2017;37:2173-2183. https://doi.org/10.21873/anticanres.11552
  16. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993-997.  https://doi.org/10.1038/nature04496
  17. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84-88.  https://doi.org/10.1038/nature04372
  18. Vassilopoulos A, Wang RH, Petrovas C, et al. Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. International Journal of Biological Sciences. 2008;4(3):133-142.  https://doi.org/10.7150/ijbs.4.133
  19. CD24. Tissue. Breast. Human Potein Atlas. Accessed August 11, 2024. https://www.proteinatlas.org/ENSG00000272398-CD24/tissue/breast#img
  20. ITGB1 (CD29). Tissue. Breast. Human Potein Atlas. Accessed August 11, 2024. https://www.proteinatlas.org/ENSG00000150093-ITGB1/tissue/breast#img
  21. CD24. Pathology. Breast Cancer. Human Potein Atlas. Accessed august 11, 2024. https://www.proteinatlas.org/ENSG00000272398-CD24/pathology/breast+cancer#img
  22. ITGB1. Pathology. Breast Cancer. Human Potein Atlas. Accessed august 11, 2024. https://www.proteinatlas.org/ENSG00000150093-ITGB1/pathology/breast+cancer#img
  23. Vassilopoulos A, Chisholm C, LahusenT, et al. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477-5482. https://doi.org/10.1038/onc.2013.516
  24. Studenikina AA, Arkhipov SA, Varaksin NA, et al. Breast biomarkers for the detection of malignancy in benign diseases in women. Russian Journal of Preventive Medicine. 2024;27(1):63-66. (In Russ.). https://doi.org/10.17116/profmed20242701163
  25. Zhang LM, Zhang Y, Fei C, et al. Neutralization of IL-18 by IL-18 binding protein ameliorates bleomycin-induced pulmonary fibrosis via inhibition of epithelial-mesenchymal transition. Biochemical and Biophysical Research Communications. 2019;508(2):660-666.  https://doi.org/10.1016/j.bbrc.2018.11.129
  26. Chattopadhyay I, Ambati R, Gundamaraju R. Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators of Inflammation. 2021;2021:9918379. https://doi.org/10.1155/2021/9918379

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.