The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Voznesenskaia T.Iu.

Institut fiziologii im. A.A. Bogomol'tsa NAN Ukrainy, Kiev

Blashkiv T.V.

Institut fiziologii im. A.A. Bogomol'tsa NAN Ukrainy, Kiev

The role of sirtuins in regulation of the ovarian function (a review)

Authors:

Voznesenskaia T.Iu., Blashkiv T.V.

More about the authors

Journal: Russian Journal of Human Reproduction. 2018;24(1): 7‑12

Read: 2827 times


To cite this article:

Voznesenskaia TIu, Blashkiv TV. The role of sirtuins in regulation of the ovarian function (a review). Russian Journal of Human Reproduction. 2018;24(1):7‑12. (In Russ.)
https://doi.org/10.17116/repro20182417-12

Recommended articles:

References:

  1. Monget P, Bobe J, Gougeon A, Fabre S, Monniaux D, Dalbies-Tran R. The ovarian reserve in mammals: a functional and evolutionary perspective. Molecular and Cellular Endocrinology. 2012;356(1-2):2-12. https://doi.org/10.1016/j.mce.2011.07.046
  2. McGinnis L, Limback S, Albertini D. Signaling modalities during oogenesis in mammals. Current Topics in Developmental Biology. 2013;102:227-242. https://doi.org/10.1016/B978-0-12-416024-8.00008-8
  3. Sobinof A, Sutherland J, Mclaughlin E. Intra-cellular signalling during female gametogenesis. Molecular Human Reproduction. 2013;19(5):265-278. https://doi.org/10.1093/molehr/gas065
  4. Bhattacharya P, Keating A. Impact of environmental exposures on ovarian function and role of xenobiotic metabolism during ovotoxicity. Toxicology and Applied Pharmacology. 2012;261(3):227-235. https://doi.org/10.1016/j.taap.2012.04.009
  5. Tatone C, Eichenlaub-Ritter U, Amicarelli F. Dicarbonyl stress and glyoxalases in ovarian function. Biochemical Society Transactions. 2014;42(2):433-438. https://doi.org/10.1042/BST20140023
  6. Eichenlaub-Ritter U. Oocyte ageing and its cellular basis. International Journal of Developmental Biology. 2012;56(10-12):841-852. https://doi.org/10.1387/ijdb.120141ue
  7. Buffenstein R, Edrey YH, Yang T, Mele J. The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age. 2008;30(2-3):99-109. https://doi.org/10.1007/s11357-008-9058-z
  8. Benkhalifa M, Ferreira Y, Chahine H. Mitochondria: participation to infertility as source of energy and cause of senescence. International Journal of Biochemistry & Cell Biology. 2014;55:60-64. https://doi.org/10.1016/j.biocel.2014.08.011
  9. Ishii T, Miyazawa M, Takanashi Y. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion. Redox Biology. 2014;2:679-685. https://doi.org/10.1016/j.redox.2014.05.001
  10. Tatone C, Amicarelli M, Carbone М. Cellular and molecular aspects of ovarian follicle ageing. Human Reproduction Update. 2008;14(2):131-142. https://doi.org/10.1093/humupd/dmm048
  11. Matos L, Stevenson F, Gomes J, Silvacarvalho L, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Molecular Human Reproduction. 2009;15(7):411-419. https://doi.org/10.1093/molehr/gap034
  12. Ito M, Muraki M, Takahashi Y. Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility. Fertility and Sterility. 2008;90(4):1026-1035. https://doi.org/10.1016/j.fertnstert.2007.07.1389
  13. Ito M, Imai M, Muraki M. GSTT1 is upregulated by oxidative stress through p38-mk2 signaling pathway in human granulosa cells: possible association with mitochondrial activity. Aging. 2011;3(12):1213-1223. https://doi.org/10.18632/aging.100418
  14. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biology of Reproduction. 2011;84(4):775-782. https://doi.org/10.1095/biolreprod.110.088583
  15. Ruder E, Hartman T, Reindollar R, Goldman M. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertility and Sterility. 2014;101(3):759-766. https://doi.org/10.1016/j.fertnstert.2013.11.008
  16. Tatone C, Eichenlaub-Ritter U, Amicarelli F. Dicarbonyl stress and glyoxalases in ovarian function. Biochemical Society Transactions. 2014;42(2):433-438. https://doi.org/10.1042/BST20140023
  17. Morris B. Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology and Medicine. 2013;56:133-171. https://doi.org/10.1016/j.freeradbiomed.2012.10.525
  18. Calabrese V, Cornelius C, Dinkova-Kostova A, Calabrese E, Mattson M. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants and Redox Signaling. 2010;13(11):1763-1811. https://doi.org/10.1089/ars.2009.3074
  19. North B, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology. 2004;5(5):123-132. https://doi.org/10.1186/gb-2004-5-5-224
  20. Pucci B, Villanova L, Sansone L. Sirtuins: the molecular basis of beneficial effects of physical activity. Internal and Emergency Medicine. 2013;8(1):23-25. https://doi.org/10.1007/s11739-013-0920-3
  21. Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trendsin Pharmacological Sciences. 2010;5:212-220. https://doi.org/10.1016/j.tips.2010.02.003
  22. Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(72550):587-591. https://doi.org/10.1038/nature08197
  23. Verdin E. The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nature Medicine. 2014;20(1):25-27. https://doi.org/10.1038/nm.3447
  24. Canto C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacological Reviews. 2012;64(1):166-187. https://doi.org/10.1124/pr.110.003905
  25. Sack M, Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harbor Perspectives in Biology. 2012;4(12):Article ID a013102. https://doi.org/10.1101/cshperspect.a013102
  26. Alavez S, Vantipalli M, Zucker D, Klang I, Lithgow G. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature. 2011;472(7342):226-230. https://doi.org/10.1038/nature09873
  27. Furukawa A, Tada-Oikawa S, Kawanishi S. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. CellularPhysiology and Biochemistry. 2007;20(1-4):45-54. https://doi.org/10.1159/000104152
  28. Li H, Rajendran G, Liu N, Ware C, Rubin B, Gu Y. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Cancer Research. 2007;9:article R1. https://doi.org/10.1186/bcr1632
  29. Bordone L, Cohen D, Robinson A. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6(6): 759-767. https://doi.org/10.1111/j.1474-9726.2007.00335.x
  30. Coussens M, Maresh J, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE. 2008;3(2):Article ID e1571. https://doi.org/10.1371/journal.pone.0001571
  31. Ahn B, Kim H, Song S. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(38): 14447-14452. https://doi.org/10.1073/pnas.0803790105
  32. Kawamura Y, Uchijima Y, Horike N. Sirt3 protects in vitro — fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest. The Journal of Clinical Investigation. 2010;120(8):2817-2828. https://doi.org/10.1172/JCI42020
  33. Manosalva I, Gonzalez A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology. 2010;74(9):1539-1547. https://doi.org/10.1016/j.theriogenology.2010.06.024
  34. Di Emidio G, Falone S, Vitti M. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Human Reproduction. 2014;29(9):2006-2017. https://doi.org/10.1093/humrep/deu160
  35. Zhang X, Li L, Xu J. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene. 2013;523(1):82-87. https://doi.org/10.1016/j.gene.2013.03.039
  36. Luo L, Chen X, Fu Y. The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats. Aging Clinical and Experimental Research. 2012;24(2):125-133. https://doi.org/10.3275/7660
  37. Wang N, Luo L, Xu J. Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism: Clinical and Experimental. 2014;63(1):94-103. https://doi.org/10.1016/j.metabol.2013.09.001
  38. Benayoun B, Georges A, Hotel D. Transcription factor FOXl2 protects granulosa cells from stress and delays cell cycle: role of its regulation by the SIRT1 deacetylase. Human Molecular Genetics. 2011;20(9):1673-1686. https://doi.org/10.1093/hmg/ddr042
  39. Pavlova S, Klucska K, Vasicek D. The involvement of SIRT1 and transcription factor NF- B (p50/p65) in regulation of porcine ovarian cell function. Animal Reproduction Science. 2013;140(3-4):180-188. https://doi.org/10.1016/j.anireprosci.2013.06.013
  40. Sirotkin A, Dekanova P, Harrath A, Alwasel S, Vasicek D. Interrelationships between sirtuin 1 and transcription factors p53 and NF-B (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell and Tissue Research. 2014;358(2):627-632. https://doi.org/10.1007/s00441-014-1940-7
  41. Kottarathil V, Antony M, Nair I, Pavithran K. Recent advances in granulosa cell tumor ovary: a review. Indian Journal of Surgical Oncology. 2013;4(1):37-47. https://doi.org/10.1007/s13193-012-0201-z
  42. Caton P, Nayuni N, Kieswich J, Khan N, Yaqoob M, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. Journal of Endocrinology. 2010;205(1):97-106. https://doi.org/10.1677/JOE-09-0345
  43. Reverchon M, Cornuau M, Cloix L. Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Molecular Human Reproduction. 2013;19(5):313-326. https://doi.org/10.1093/molehr/gat002
  44. Morita Y, Wada-Hiraike O, Yano T. Resveratrol pro-motes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reproductive Biology and Endocrinology. 2012;10:article 14. https://doi.org/10.1186/1477-7827-10-14
  45. Lombard D, Tishkoff D, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handbook of Experimental Pharmacology. 2011;206:163-188. https://doi.org/10.1007/978-3-642-21631-2_8
  46. Pacella-Ince L, Zander-Fox D, Lan M. Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Human Reproduction. 2014;29(7):1490-1499. https://doi.org/10.1093/humrep/deu071
  47. Fu H, Wada-Hiraike O, Hirano M. SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology. 2014;155(8):3079-3087. https://doi.org/10.1210/en.2014-1025
  48. Lee D, Goldberg A. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. Journal of Biological Chemistry. 2013;288(42):30515-30526. https://doi.org/10.1074/jbc.M113.489716
  49. Yamakuchi M. MicroRNA regulation of SIRT1. Frontiers in Physiology. 2012;3:article 68. https://doi.org/10.3389/fphys.2012.00068
  50. Chen T, Shentu L, Wen D, Johnson A, Shyy Y. Regulation of SIRT1 by oxidative stress-responsive miRNAs and a systematic approach to identify its role in the endothelium. Antioxidants and Redox Signaling. 2013;19(13):1522-1538. https://doi.org/10.1089/ars.2012.4803
  51. Su Y, Sugiura K, Woo Y. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Developmental Biology. 2007;302(1):104-117. https://doi.org/10.1016/j.ydbio.2006.09.008
  52. Takeo S, Sato D, Kimura K, Monji Y, Kuwayama T, Kawahara-Miki R, Iwata H. Resveratrol improves the mitochondrial function and fertilization outcome of bovine oocytes. J Reprod Dev. 2014;60(2):92-99. https://doi.org/10.1262/jrd.2013-102
  53. Kwak S, Cheong S, Yoon J, Jeon Y, Hyun S. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology. 2012;78(7):1597-1610. https://doi.org/10.1016/j.theriogenology.2012.07.006

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.