The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Prazdnikov E.N.

Yevdokimov Moscow State University of Medicine and Dentistry

Farhat F.A.

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Evsyukova Z.A.

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

The use of hardware technologies in the regulation of the wound process in laboratory animals

Authors:

Prazdnikov E.N., Farhat F.A., Evsyukova Z.A.

More about the authors

Read: 1174 times


To cite this article:

Prazdnikov EN, Farhat FA, Evsyukova ZA. The use of hardware technologies in the regulation of the wound process in laboratory animals. Russian Journal of Operative Surgery and Clinical Anatomy. 2021;5(4):42‑49. (In Russ.)
https://doi.org/10.17116/operhirurg2021504142

Recommended articles:

References:

  1. Salgado G, Ng Y, Koh L, Goh C, Common J. Human reconstructed skin xenografts on mice to model skin physiology. Differentiation. 2017;98:14-24.  https://doi.org/10.1016/j.diff.2017.09.004
  2. Tykhvynska O, Volkova N, Rogulska O, Revenko O, Mazur S. Healing of excision skin wounds in mice in the presence of plasma-based scaffolds. Bull Probl Biol Med. 2018;2(4);307-312.  https://doi.org/10.29254/2077-4214-2018-4-2-147-307-312
  3. Nishiguchi MA, Spencer CA, Leung DH, Leung TH. Aging Suppresses Skin-Derived Circulating SDF1 to Promote Full-Thickness Tissue Regeneration. Cell Rep. 2018;24(13):3383-3392.e5.  https://doi.org/10.1016/j.celrep.2018.08.054
  4. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. https://doi.org/10.1098/rsob.200223
  5. Qian LW, Fourcaudot AB, Yamane K, You T, Chan RK, Leung KP. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regener. 2016;24:26-34.  https://doi.org/10.1111/wrr.12381
  6. Wichaiyo S, Lax S, Montague SJ, Li Z, Grygielska B, Pike JA, Haining EJ, Brill A, Watson SP, Rayes J. Platelet glycoprotein VI and C-type lectin-like receptor 2 deficiency accelerates wound healing by impairing vascular integrity in mice. Haematologica. 2019;104(8):1648-1660. https://doi.org/10.3324/haematol.2018.208363
  7. Ancuta Muntean, Ionica Stoica, Dan Mircea Enescu. Scarless wound healing — a literature review. Romanian J Pediatr. 2019;68(3):160-165.  https://doi.org/10.37897/RJP.2019.3.2
  8. Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions. Adv Wound Care (New Rochelle). 2018;7(2):29-45.  https://doi.org/10.1089/wound.2016.0696
  9. Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harbor Perspec Med. 2015;5(1):1-15.  https://doi.org/10.1101/cshperspect.a023267
  10. Lee HJ, Jang YJ. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci. 2018;19(3):711.  https://doi.org/10.3390/ijms19030711
  11. Foote AG, Wang Z, Kendziorski C. Tissue specific human fibroblast differential expression based on RNA sequencing analysis. BMC Genomics 2019;20:308.  https://doi.org/10.1186/s12864-019-5682-5
  12. Gomes RN, Manuel F, Nascimento DS. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. Npj Regen Med. 2021;6:43.  https://doi.org/10.1038/s41536-021-00153-z
  13. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX. The Role of Calcium in Wound Healing. Int J Mol Sci. 2021;22:6486. https://doi.org/10.3390/ijms22126486
  14. Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle). 2021. Date of application 17.09.21.  https://doi.org/10.1089/wound.2020.1287
  15. Koudouna E, Spurlin J, Babushkina A, Quantock AJ, Jester JV, Lwigale P. Recapitulation of normal collagen architecture in embryonic wounded corneas. Scientific Reports. 2020;10:13815. https://doi.org/10.1038/s41598-020-70658-y
  16. Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol. 2019;10:1810. https://doi.org/10.3389/fimmu.2019.01810
  17. Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin — Contribution to Wound Healing and Scarring. Frontiers in Cell and Developmental Biology. 2020;8:578384. https://doi.org/10.3389/fcell.2020.578384
  18. Kananykhina EY, Shmakova TV, Bolshakova GB, Rusanov FS, Elchaninov AV, Nikitina MP, Lokhonina AV, Makarov AV, Fatkhudinov TKh. Expression of Metalloproteinases and Type I and III Collagens during Healing of Excisional Skin Wound on the Abdomen and Back in Rats. Bull Exp Biol Med. 2020;168:812-816. 
  19. Lee K, Ward N, Oremule B, Mani N. Optimal wound closure techniques for thyroid and parathyroid surgery: A systematic review of cosmetic outcomes. Clin Otolaryngol. 2019;44(6):905-913.  https://doi.org/10.1111/coa.13382
  20. Xu J, Chang R, Zhang W, Zhang C, Zhu D, Liu F, Yang Y. Skin stretch suturing with Nice knots in the treatment of small- or medium-sized wounds. J Orthop Surg Res. 2020;15(1):488.  https://doi.org/10.1186/s13018-020-02007-8
  21. Behrouz-Pirnia A, Liu H, Peternel S, Dervishi G, Labeit A, Peinemann F. Early laser intervention to reduce scar formation in wound healing by primary intention: A systematic review. J Plast Reconstr Aesthet Surg. 2020;73(3):528-536.  https://doi.org/10.1016/j.bjps.2019.09.050
  22. Shome D, Khare S, Kapoor R. An Algorithm Using Botox Injections for Facial Scar Improvement in Fitzpatrick Type IV—VI Skin. Plast Reconstr Surg Glob Open. 2018;6(8):e1888. https://doi.org/10.1097/GOX.0000000000001888
  23. Chen Z, Chen Z, Pang R, Wei Z, Zhang H, Liu W, Li G. The effect of botulinum toxin injection dose on the appearance of surgical scar. Sciec Reports. 2021;11:13670. https://doi.org/10.1038/s41598-021-93203-x
  24. Tran B, Wu JJ, Ratner D, Han G. Topical Scar Treatment Products for Wounds: A Systematic Review. Dermatol Surg. 2020;46(12):1564-1571. https://doi.org/10.1097/DSS.0000000000002712
  25. Duraes LF, Gomes O. Healing Process of Rat Skin Wounds Treated With Vitamin C and Low-Intensity Laser Therapy. Cureus. 2020;12(12):e11933. https://doi.org/10.7759/cureus.11933
  26. Arumugam S. Role of Vitamin C on Wound Healing. Int J Med Surg Nurs. 2019;2(2):1267.
  27. Zerbinati N, Sommatis S, Maccario C, Di Francesco S, Capillo MC, Rauso R, Herrera M, Bencini PL, Guida S, Mocchi R. The Anti-Ageing and Whitening Potential of a Cosmetic Serum Containing 3-O-ethyl-l-ascorbic Acid. Life. 2021;11(5):406.  https://doi.org/10.3390/life11050406
  28. Chaves ME, Araújo AR, Piancastelli AC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89(4):616-623.  https://doi.org/10.1590/abd1806-4841.20142519
  29. Subadi I, Wardhani IL, Andriati A. The expression of TGF-1 after LLLT in inflammation animal model. Folia Med Indonesiana. 2017;53(1):29-32.  https://doi.org/10.20473/fmi.v53i1.5486
  30. Solmaz H, Ulgen Y, Gulsoy M. Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci. 2017;32(4):903-910.  https://doi.org/10.1007/s10103-017-2191-0
  31. Zhao B, Wang H, Dong W, Cheng S, Li H, Tan J, Zhou J, He W, Li L, Zhang J, Luo G, Qian W. A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms. J Nanobiotechnol. 2020;18(1):59.  https://doi.org/10.1186/s12951-020-00614-5
  32. Qian W, Yan C, He D, Yu X, Yuan L, Liu M, Luo G, Deng J. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater. 2018;69:256-264.  https://doi.org/10.1016/j.actbio.2018.01.022
  33. Korupalli C, Huang CC, Lin WC, Pan WY, Lin PY, Wan WL, Li MJ, Chang Y, Sung HW. Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials. 2017;116:1-9.  https://doi.org/10.1016/j.biomaterials.2016.11.045
  34. Zhao Y, Dai X, Wei X, Yu Y, Chen X, Zhang X, Li C. Near-infrared light- activated thermosensitive liposomes as efficient agents for photothermal and antibiotic synergistic therapy of bacterial biofilm. ACS Appl Mater Interfaces. 2018;10:14426-14437. https://doi.org/10.1021/acsami.8b01327
  35. Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren K-F, Ji J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photother- mal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano. 2017;11:9330-9339. https://doi.org/10.1021/acsnano.7b04731
  36. Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A biomimetic non-antibiotic approach to eradicate drug-resistant infections. 2019;31:1806024. https://doi.org/10.1002/adma.201806024
  37. Zhang L, Wang Y, Wang J, Wang Y, Chen A, Wang C, Mo W, Li Y, Yuan Q, Zhang Y. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection. ACS Appl Mater Interfaces. 2019;11:300-310.  https://doi.org/10.1021/acsami.8b18146
  38. Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C, Gu Z, Zhao Y. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small. 2018;14:e1802290. https://doi.org/10.1002/smll.201802290
  39. Jawaid M, Ahmad A, Lokhat D. Graphene-based Nanotechnologies for Energy and Environmental Applications. Elsevier 2019.
  40. Wang H, Song Z, Li S, Wu Y, Han H. One Stone with Two Birds: Functional Gold Nanostar for Targeted Combination Therapy of Drug-Resistant Staphylococcus aureus Infection. ACS Appl Mater Interfaces. 2019;11(36):32659-32669. https://doi.org/10.1021/acsami.9b09824
  41. Huang J, Zhou J, Zhuang J, Gao H, Huang D, Wang L, Wu W, Li Q, Yang DP, Han MY. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of gram-positive and -negative Bacteria. ACS Appl Mater Interfaces. 2017;9:36606-36614. https://doi.org/10.1021/acsami.7b11062
  42. Ren X, Gao R, van der Mei HC, Ren Y, Peterson BW, Busscher HJ. Eradicating Infecting Bacteria while Maintaining Tissue Integration on Photothermal Nanoparticle-Coated Titanium Surfaces. ACS Appl Mater Interfaces. 2020;12(31):34610-34619. https://doi.org/10.1021/acsami.0c08592
  43. Xiao L, Sun J, Liu L, Hu R, Lu H, Cheng C, Huang Y, Wang S, Geng J. Enhanced photothermal bactericidal activity of the reduced graphene oxide modified by cationic water-soluble conjugated polymer. ACS Appl Mater Interfaces. 2017;9:5382-5391. https://doi.org/10.1021/acsami.6b14473
  44. Cunha JLS, Carvalho FMA, Pereira Filho RN, Ribeiro MAG, de Albuquerque-Júnior RLC. Effects of Different Protocols of Low-Level Laser Therapy on Collagen Deposition in Wound Healing. Braz Dent J. 2019;30(4):317-324.  https://doi.org/10.1590/0103-6440201902400
  45. Valizadeh A, Shirzad M, Pourmand MR, Farahmandfar M, Sereshti H, Amani A. Preparation and Comparison of Effects of Different Herbal Oil Ointments as Wound-Healing Agents. Cells Tissues Organs. 2019;207:177-186.  https://doi.org/10.1159/000503624
  46. Adilson DC. Minimally invasive aesthetic procedures:a guide for dermatologists and plastic surgeons. Cham Springer International Publishing. 2020. https://doi.org/10.1007/978-3-319-78265-2
  47. Tatmatsu-Rocha JC, Tim CR, Avo L, Bernardes-Filho R, Brassolatti P, Kido HW, Hamblin MR, Parizotto NA. Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: comparison of 904 nm laser and 850 nm light-emitting diode (LED). J Photochem Photobiol B. 2018;187:41-47.  https://doi.org/10.1016/j.jphotobiol.2018.07.032
  48. Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 2017;11:637-645.  https://doi.org/10.1016/j.redox.2017.01.013
  49. Morio B. Mitochondria in Obesity and Type 2 Diabetes: Comprehensive Review on Mitochondrial Functioning and Involvement in Metabolic Diseases. Academic Press. 2019.
  50. Venditti P, Di Meo S. The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int J Mol Scie. 2020;21(6):2173. https://doi.org/10.3390/ijms21062173
  51. Wardlaw JL, Gazzola KM, Wagoner A, Brinkman E, Burt J, Butler R, Gunter JM, Senter LH. Laser Therapy for Incision Healing in 9 Dogs. Front Vet Sci. 2019;5:art. 349.  https://doi.org/10.3389/fvets.2018.00349
  52. De Oliveira A, Vanin A, De Marchi T, Antonialli F, Grandinetti V, De Paiva P, Pontes G, Santos L, Junior I, Carvalho P, Bjorda J, Leal-Junior E. What is the ideal dose and power output of low-level laser therapy (810 nm) on muscle performance and post-exercise recovery? Study protocol for a double-blind, randomized, placebo-controlled trial. Trials. 2014;15:69.  https://doi.org/10.1186/1745-6215-15-69

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.