The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Petrova L.P.

Institute of Biochemistry and Physiology of Plants and Microorganisms — Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Volokhina I.V.

Institute of Biochemistry and Physiology of Plants and Microorganisms — Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Sheludko A.V.

Institute of Biochemistry and Physiology of Plants and Microorganisms — Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

The effect of the hybrid histidine kinase gene inactivation on cell morphology in Azospirillum baldaniorum and Azospirillum brasilense

Authors:

Petrova L.P., Volokhina I.V., Sheludko A.V.

More about the authors

Read: 129 times


To cite this article:

Petrova LP, Volokhina IV, Sheludko AV. The effect of the hybrid histidine kinase gene inactivation on cell morphology in Azospirillum baldaniorum and Azospirillum brasilense. Molecular Genetics, Microbiology and Virology. 2025;43(3):47‑54. (In Russ.)
https://doi.org/10.17116/molgen20254303147

References:

  1. Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018;8:73.  https://doi.org/10.1186/s13568-018-0608-1
  2. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V., Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin IB. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genetics. 2011;7:e1002430. https://doi.org/10.1371/journal.pgen.1002430
  3. Borland S, Oudart A, Prigent-Combaret C, BrochierArmanet C, Wisniewski-Dyé F. Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum. BMC Genomics. 2015;16:e833. https://doi.org/10.1186/s12864-015-1962-x
  4. Laub MT, Goulian M. Specificity in two-component signal transduction pathways. Annu Rev Genet. 2007;41:121-145.  https://doi.org/10.1146/annurev.genet.41.042007.170548
  5. Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. Peer J. 2020;8:e8466. https://doi.org/10.7717/peerj.8466
  6. Filip’echeva Yu, Shelud’ko A, Prilipov A, Telesheva E, Mokeev D, Burov A, Petrova L, Katsy E. Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella. Folia Microbiol. 2018;63:147-153.  https://doi.org/10.1007/s12223-017-0543-6
  7. Dubey AP, Pandey P, Singh VS, Mishra MN, Singh S, Mishra R, Tripathi AK. An ECF41 family σ factor controls motility and biogenesis of lateral flagella in Azospirillum brasilense Sp245. J. Bacteriol. 2020;202:e00231-20.  https://doi.org/10.1128/JB.00231-20
  8. Ganusova EE, Vo LT, Mukherjee T, Alexandre G. Multiple CheY proteins control surface-associated lifestyles of Azospirillum brasilense. Front. Microbiol. 2021;12:664826. https://doi.org/10.3389/fmicb.2021.664826
  9. Chawla R, Gupta R, Lele TP, Lele PP. A skeptic’s guide to bacterial mechanosensing. J. Molecular Biology. 2020;432:523-533.  https://doi.org/10.1016/j.jmb.2019.09.004.
  10. Moens S, Schloter M, Vanderleyden J. Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J. Bacteriol. 1996;178:5017-5019. https://doi.org/10.1128/jb.178.16.5017-5019.1996
  11. Shelud’ko A, Volokhina I, Mokeev D, Telesheva E, Yevstigneeva S, Burov A, Tugarova A, Shirokov A, Burigin G, Matora L, Petrova L. Chromosomal gene of hybrid multisensor histidine kinase is involved in motility regulation in the rhizobacterium Azospirillum baldaniorum Sp245 under mechanical and water stress. World J Microbiol Biotechnol. 2023;39:336.  https://doi.org/10.1007/s11274-023-03785-z
  12. Döbereiner J, Day JM. Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites, Symposium on Nitrogen Fixation / eds. Newton WE, Nijmans CJ. Pullman, Washington State University Press; 1976:518-538. 
  13. Sambrook J, Fritsch EF, Maniatis T, eds. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989.
  14. Baldani JI. Survival of endophytic diazotrophic bacteria in soil under different moisture intensities. Braz J Microbiol. 2004;35:295-299.  https://doi.org/10.1590/S1517-83822004000300005
  15. Ferreira NdS, Sant’Anna FH, Reis VM, Ambrosini A, Volpiano CG, Rothballer M, Schwab S, Baura VA, Balsanelli E, Pedrosa FdO, Passaglia LMP, Souza EM, Hartmann A, Cassan F, Zilli JE. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. Nov. Microbiol. Society. 2020;70:6203-6212. https://doi.org/10.1099/ijsem.0.004517
  16. Tarrand JX, Krieg NE, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1978;24:967-980.  https://doi.org/10.1139/m78-160
  17. Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. PNAS USA. 1979;76:1648-1652. https://doi.org/10.1073/pnas.76.4.1648
  18. Kumar S, Rai AK, Mishra MN, Shukla M, Singh PK, Tripathi AK. RpoH2 sigma factor controls the photooxidative stress response in a nonphotosynthetic rhizobacterium, Azospirillum brasilense Sp7. Microbiology. 2012;158:2891-2902. https://doi.org/10.1099/mic.0.062380-0
  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408.  https://doi.org/10.1006/meth.2001.1262
  20. Paget MS, Helmann JD. The σ70 family of sigma factors. Genome Biol. 2003;4:203.  https://doi.org/10.1186/gb-2003-4-1-203
  21. Kazmierczak MJ, Wiedmann M, Boo KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev. 2005;69:527-543.  https://doi.org/10.1128/mmbr.69.4.527-543.2005
  22. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006;20:1776-1789. https://www.genesdev.org/cgi/doi.org/10.1101/gad.1428206.
  23. Gullett JM, Bible A, Alexandre G. Distinct domains of CheA confer unique functions in chemotaxis and cell length in Azospirillum brasilense Sp7. J. Bacteriol. 2017;199:e00189-e00117. https://doi.org/10.1128/JB.00189-17
  24. Kim W, Killam T, Sood V, Surette MG. Swarm-cell differentiation in Salmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics. J. Bacteriol. 2003;185:3111-3117. https://doi.org/10.1128/jb.185.10.3111-3117.2003
  25. Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J. Bacteriol. 2019;201:e00726-e00718. https://doi.org/10.1128/jb.00726-18

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.