The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Puzakov M.V.

A.O. Kovalevsky Institute of Biology of the Southern Seas RAS

Puzakova L.V.

A.O. Kovalevsky Institute of Biology of the Southern Seas RAS

Ulupova Y.N.

A.O. Kovalevsky Institute of Biology of the Southern Seas RAS

Differential activity of genes with fragments of IS630/TC1/MARINER transposons in the genome of MNEMIOPSIS LEIDYI

Authors:

Puzakov M.V., Puzakova L.V., Ulupova Y.N.

More about the authors

Read: 1087 times


To cite this article:

Puzakov MV, Puzakova LV, Ulupova YN. Differential activity of genes with fragments of IS630/TC1/MARINER transposons in the genome of MNEMIOPSIS LEIDYI. Molecular Genetics, Microbiology and Virology. 2022;40(4):30‑35. (In Russ.)
https://doi.org/10.17116/molgen20224004130

References:

  1. Sinzelle L, Izsvák Z, Ivics Z. Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci. 2009;66(6):1073-1093. https://doi.org/10.1007/s00018-009-8376-3
  2. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol. 2018;19:199.  https://doi.org/10.1186/s13059-018-1577-z
  3. Yurchenko NN, Kovalenko LV, Zakharov IK. Mobile genetic elements: instability of genes and genomes. Vavilov Journal of Genetics and Breeding. 2011;15(2):261-270. (In Russ.). https://www.bionet.nsc.ru/vogis/pict_pdf/2011/15_2/3.pdf
  4. Piacentini L, Fanti L, Specchia V, Bozzetti MP, Berloco M, Palumbo G, Pimpinelli S. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 2014;123(4):345-354.  https://doi.org/10.1007/s00412-014-0464-y
  5. Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, et al. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC genomics. 2018;19(1):339.  https://doi.org/10.1186/s12864-018-4714-x
  6. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007;8(12):973-982.  https://doi.org/10.1038/nrg2165
  7. Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mobile DNA. 2018;9:2.  https://doi.org/10.1186/s13100-017-0107-y
  8. Yuan YW, Wessler SR. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA. 2011;108(19):7884-7889. https://doi.org/10.1073/pnas.1104208108
  9. Dupeyron M, Baril T, Bass C, Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mobile DNA. 2020;11:21.  https://doi.org/10.1186/s13100-020-00212-0
  10. Gao B, Wang Y, Diaby M, Zong W, Shen D, Wang S, et al. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mobile DNA. 2020;11:25.  https://doi.org/10.1186/s13100-020-00220-0
  11. Shao H, Tu Z. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 2001;159(3):1103-1115. https://doi.org/10.1093/genetics/159.3.1103
  12. Tellier M, Bouuaert CC, Chalmers R. Mariner and the ITm superfamily of transposons. Microbiology spectrum. 2015;3(2):MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014
  13. Zhang HH, Shen YH, Xiong XM, Han MJ, Zhang XG. Identification and evolutionary history of the DD41D transposons in insects. Genes & Genomics. 2016;38:109-117.  https://doi.org/10.1007/s13258-015-0356-4
  14. Shen D, Gao B, Miskey C, Chen C, Sang Y, Zong W, et al. Multiple invasions of Visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates. Genome biology and evolution. 2020;12(7):1060-1073. https://doi.org/10.1093/gbe/evaa135
  15. Wang S, Diaby M, Puzakov M, Ullah N, Wang Y, Danley P, et al. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Molecular Phylogenetics and Evolution. 2021;161:107143. https://doi.org/10.1016/j.ympev.2021.107143
  16. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331-368.  https://doi.org/10.1146/annurev.genet.40.110405.090448
  17. Liu Y, Yang G. Tc1-like transposable elements in plant genomes. Mobile DNA. 2014;5:17. PMID: 24926322; PMCID: PMC4054914. https://doi.org/10.1186/1759-8753-5-17
  18. Emmons SW, Yesner L, Ruan KS, Katzenberg D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983;32(1):55-65.  https://doi.org/10.1016/0092-8674(83)90496-8
  19. Franz G, Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic acids research. 1991;19(23):6646. https://doi.org/10.1093/nar/19.23.6646
  20. Langin T, Capy P, Daboussi MJ. The transposable element Impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet. 1995;246(1):19-28.  https://doi.org/10.1007/BF00290129
  21. Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 2010;25(9):537-546.  ttps://doi.org/10.1016/j.tree.2010.06.001
  22. Puzakov MV, Puzakova LV, Cheresiz SV, Sang Y. The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol Phylogenet Evol. 2021;163:107231. https://doi.org/10.1016/j.ympev.2021.107231
  23. Bowen NJ, Jordan IK. Exaptation of protein coding sequences from transposable elements. Genome Dyn. 2007;3:147-162.  https://doi.org/10.1159/000107609
  24. Jangam D, Feschotte C, Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends in Genetics. 2017;33(11):817-831.  https://doi.org/10.1016/j.tig.2017.07.011
  25. Kapitonov VV, Jurka J. RAG1 core and V (D) J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005;3(6):e181. https://doi.org/10.1371/journal.pbio.0030181
  26. Panchin Y, Moroz LL. Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes. Biochem Biophys Res Commun. 2008;369(3):818-823.  https://doi.org/10.1016/j.bbrc.2008.02.097
  27. Kim HS, Chen Q, Kim SK., Nickoloff JA, Hromas R, Georgiadis MM, Lee SH. The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart. J Biol Chem. 2014;289(15):10930-10938. https://doi.org/10.1074/jbc.M113.533216
  28. Mateo L, Ullastres A, González J. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet. 2014;10(8):e1004560. https://doi.org/10.1371/journal.pgen.1004560
  29. Mills CE, 1998-Present. Phylum Ctenophora: list of all valid species names. [Internet Document]. Last Update Date: 30 Mar 2017  https://faculty.washington.edu/cemills/Ctenolist.html
  30. Pang K, Martindale MQ. Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol. 2008;218:307-319.  https://doi.org/10.1007/s00427-008-0222-3
  31. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;10(7503):109-114.  https://doi.org/10.1038/nature13400
  32. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P. Comparative Sequencing Program N.I.S.C., Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592. https://doi.org/10.1126/science.1242592
  33. Jekely G, Paps J, Nielsen C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evodevo. 2015;6:1-8.  https://doi.org/10.1186/2041-9139-6-1
  34. Vinogradov ME, Shushkina EA, Musaeva EI, Sorokin YuI. A newly acclimated species in the Black Sea: the ctenophore Mnemiopsis leidyi (Ctenophora: Lobata). Oceanology. 1989;29(2):220-224. (In Russ.).
  35. Shiganova TA. Ctenophore Mnemiopsis leidyi and ichthyoplankton in the Sea of Marmara in October 1992. Oceanology. 1993;33(6):900-903. (In Russ.).
  36. Ivanov VP, Kamakin AM, Ushivtzev VB. Invasion of the Caspian Sea by the comb jellyfish Mnemiopsis leidyi (Ctenophora). Biological Invasions. 2000;2:255-258.  https://doi.org/10.1023/A:1010098624728
  37. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  38. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2008;36(1):13-21.  https://doi.org/10.1093/nar/gkm1000
  39. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:5:525-527.  https://doi.org/10.1038/nbt.3519
  40. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687-690.  https://doi.org/10.1038/nmeth.4324

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.