The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gretsov I.D.

Kursk State Medical University

Dmitriev M.A.

Kursk State Medical University

Obedkov E.G.

Kursk State Medical University

Ivanov I.S.

Kursk State Medical University

Evolution of systemic and local hemostatic agents in armed conflicts

Authors:

Gretsov I.D., Dmitriev M.A., Obedkov E.G., Ivanov I.S.

More about the authors

Journal: Pirogov Russian Journal of Surgery. 2024;(11): 94‑99

Read: 794 times


To cite this article:

Gretsov ID, Dmitriev MA, Obedkov EG, Ivanov IS. Evolution of systemic and local hemostatic agents in armed conflicts. Pirogov Russian Journal of Surgery. 2024;(11):94‑99. (In Russ.)
https://doi.org/10.17116/hirurgia202411194

References:

  1. Klein MK, Tsihlis ND, Pritts TA, Kibbe MR. Emerging Therapies for Prehospital Control of Hemorrhage. The Journal of surgical research. 2020;248:182-190.  https://doi.org/10.1016/j.jss.2019.09.070
  2. Peng HT. Hemostatic agents for prehospital hemorrhage control: a narrative review. Military Medical Research. 2020;7:13.  https://doi.org/10.1186/s40779-020-00241-z
  3. Samokhvalov IM, Badalov VI, Reva VA, Golovko KP, Petrov AN, Kaznacheev MV, Rozov AI. Promising technologies for providing surgical care to the wounded. Military Medical Journal. 2013;334(6):24-30. (In Russ.).
  4. Khan MA, Mujahid M. A review on recent advances in chitosan based composite for hemostatic dressings. International journal of biological macromolecules. 2019;124:138-147.  https://doi.org/10.1016/j.ijbiomac.2018.11.045
  5. Gomenyuk DT, Kuperin AS, Trusov VA. The problem of choosing the optimal local hemostatic agent for first aid on the battlefield. Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region. 2018;3(22):56-59. (In Russ.).
  6. Budko EV, Chernikova DA, Yampolsky LM, Yatsyuk VYa. Local hemostatic agents and ways of their improvement. Russian Medical and Biological Bulletin named after Academician I.P. Pavlov. 2019;27(2):274-285. (In Russ.).
  7. Charyev YuO, Askerov EM, Ryzhova TS, Muravlyantseva MM. Locally acting hemostatic drugs in modern surgical practice. Tver medical journal. 2022;1:31-41. (In Russ.).
  8. Shatokhina NA, Zhukov SV, Morozov AM, Mnoyan AKh, Muravlyantseva MM, Ryzhova TS, Belyak MA. On the problem of using hemostatic agents in modern surgical practice. Modern problems of science and education. 2022;1. (In Russ.). https://doi.org/10.17513/spno.31488
  9. Lipatov VA, Bordunova MA, Panov AA, Denisov AA. On the classification of local hemostatic agents. Innova. 2022;4(29):38-41. (In Russ.).
  10. Lempert AR, Logvinova YuS, Bychichko DYu, Nevedrova OE, Kabak VA, Mironov MS, Belozerskaya GG, Sivkov AA, Shanenkov II, Golubev EM, Shirokova TI. Structural and functional investigation of chitosan-based hemostatic coatings. Bulletin of Medical Science. 2021;4(24):81-87. (In Russ.). https://doi.org/10.31684/25418475-2021-4-81
  11. Elsabahy M, Hamad MA. Design and Preclinical Evaluation of Chitosan/Kaolin Nanocomposites with Enhanced Hemostatic Efficiency. Marine drugs. 2021;19(2):50.  https://doi.org/10.3390/md19020050
  12. Fan P, Zeng Y, Zaldivar-Silva D, Agüero L, Wang S. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules. 2023;28(3):1473. https://doi.org/10.3390/molecules28031473
  13. Hu Z, Zhang DY, Lu ST, Li PW, Li SD. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine drugs. 2018;16(8):273.  https://doi.org/10.3390/md16080273
  14. Chen KY, Chen YC, Lin TH, Yang CY, Kuo YW, Lei U. Hemostatic Enhancement via Chitosan Is Independent of Classical Clotting Pathways-A Quantitative Study. Polymers. 2020;12(10):2391. https://doi.org/10.3390/polym12102391
  15. Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydrate polymers. 2023;311:120780. https://doi.org/10.1016/j.carbpol.2023.120780
  16. Fan X, Li Y, Li N, Wan G, Ali MA, Tang K. Rapid hemostatic chitosan/cellulose composite sponge by alkali/urea method for massive haemorrhage. International journal of biological macromolecules. 2020;164:2769-2778. https://doi.org/10.1016/j.ijbiomac.2020.07.312
  17. Chan LW, Kim CH, Wang X, Pun SH, White NJ, Kim TH. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta biomaterialia. 2016;31:178-185.  https://doi.org/10.1016/j.actbio.2015.11.017
  18. Khan MA, Mujahid M. A review on recent advances in chitosan based composite for hemostatic dressings. International journal of biological macromolecules. 2019;124:138-147.  https://doi.org/10.1016/j.ijbiomac.2018.11.045
  19. Mardani M, Eftekharian HR, Naseri M, Hosseini SMH, Mohammadi H, Danesteh H, Ghadimi N, Fazel S. Hemostatic efficacy of composite polysaccharide powder (starch-chitosan) for emergency bleeding control: An animal model study. Surgery. 2022;172(3):1007-1014. https://doi.org/10.1016/j.surg.2022.04.054
  20. Sun X, Tang Z, Pan M, Wang Z, Yang H, Liu H. Chitosan/kaolin composite porous microspheres with high hemostatic efficacy. Carbohydrate polymers. 2017;177:135-143.  https://doi.org/10.1016/j.carbpol.2017.08.131
  21. Deineka V, Sulaieva O, Pernakov N, Radwan-Pragłowska J, Janus L, Korniienko V, Husak Y, Yanovska A, Liubchak I, Yusupova A, Piątkowski M, Zlatska A, Pogorielov M. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Materials science & engineering. C, Materials for biological applications. 2021;120:111740. https://doi.org/10.1016/j.msec.2020.111740
  22. Xu Q, Hu E, Qiu H, Liu L, Li Q, Lu B, Yu K, Lu F, Xie R, Lan G, Zhang Y. Catechol-chitosan/carboxymethylated cotton-based Janus hemostatic patch for rapid hemostasis in coagulopathy. Carbohydrate polymers. 2023;315:120967. https://doi.org/10.1016/j.carbpol.2023.120967
  23. Yu P, Zhong W. Hemostatic materials in wound care. Burns & trauma. 2021;9:tkab019. https://doi.org/10.1093/burnst/tkab019
  24. Zhang W, Wu J, Yu L, Chen H, Li D, Shi C, Xiao L, Fan J. Paraffin-Coated Hydrophobic Hemostatic Zeolite Gauze for Rapid Coagulation with Minimal Adhesion. ACS applied materials & interfaces. 2021;13(44):52174-52180. https://doi.org/10.1021/acsami.1c10891
  25. Shiu VF, Keller R. Use of QuikClot Combat Gauze during Mohs stages for intraoperative hemostasis. Journal of the American Academy of Dermatology. 2019;80(5):e117-e118. https://doi.org/10.1016/j.jaad.2018.06.020
  26. Jia YJ, Du WQ, Zong ZW, Jiang RQ, Zhong X, Ye Z, Li TS, Yang HY, Xiao LP, Fan J. Hemostatic Effects of Bio-Zeolite Gauze and QuikClot Combat Gauze on Major Bleeding in Rabbits Acutely Exposed to High Altitude. Prehospital emergency care. 2023;27(5):592-599.  https://doi.org/10.1080/10903127.2022.2126912
  27. Tarkova AR, Chernyavsky AM, Morozov SV, Grigoriev IA, Tkacheva NI, Rodionov VI. Hemostatic material of local action based on oxidized cellulose. Siberian Scientific Medical Journal. 2015;2:11-15. (In Russ.).
  28. Zhang S, Li J, Chen S, Zhang X, Ma J, He J. Oxidized cellulose-based hemostatic materials. Carbohydrate polymers. 2020;230:115585. https://doi.org/10.1016/j.carbpol.2019.115585
  29. Kachmazov AA, Zhernov AA. Methods of hemostasis and the use of preparations from oxidized reduced cellulose in kidney resection. Experimental and clinical urology. 2010;(4):68-71. (In Russ.).
  30. Li S, Wu X, Bai N, Ni J, Liu X, Mao W, Jin L, Xiang H, Fu H, Shou Q. Fabricating Oxidized Cellulose Sponge for Hemorrhage Control and Wound Healing. ACS biomaterials science & engineering. 2023;9(11):6398-6408. https://doi.org/10.1021/acsbiomaterials.3c00018
  31. Sperry JL, Guyette FX, Brown JB, Yazer MH, Triulzi DJ, Early-Young BJ, Adams PW, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Witham WR, Putnam AT, Duane TM, Alarcon LH, Callaway CW, Zuckerbraun BS, Neal MD, Rosengart MR, Forsythe RM, Billiar TR, Yealy DM, Peitzman AB, Zenati MS; PAMPer Study Group. Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock. The New England journal of medicine. 2018;379(4):315-326.  https://doi.org/10.1056/NEJMoa1802345
  32. Moore HB, Moore EE, Chapman MP, McVaney K, Bryskiewicz G, Blechar R, Chin T, Burlew CC, Pieracci F, West FB, Fleming CD, Ghasabyan A, Chandler J, Silliman CC, Banerjee A, Sauaia A. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial. Lancet. 2018;392(10144):283-291.  https://doi.org/10.1016/S0140-6736(18)31553-8
  33. Sheffield WP, Singh K, Beckett A, Devine DV. Prehospital Freeze-Dried Plasma in Trauma: A Critical Review. Transfusion medicine reviews. 2024;38(1):150807. https://doi.org/10.1016/j.tmrv.2023.150807
  34. Mok G, Hoang R, Khan MW, Pannell D, Peng H, Tien H, Nathens A, Callum J, Karkouti K, Beckett A, da Luz LT. Freeze-dried plasma for major trauma — Systematic review and meta-analysis. The journal of trauma and acute care surgery. 2021;90(3):589-602.  https://doi.org/10.1097/TA.0000000000003012
  35. Jost D, Lemoine S, Lemoine F, Derkenne C, Beaume S, Lanoë V, Maurin O, Louis-Delaurière E, Delacote M, Dang-Minh P, Franchin-Frattini M, Bihannic R, Savary D, Levrat A, Baudouin C, Trichereau J, Salomé M, Frattini B, Ha VHT, Jouffroy R, Seguineau E, Titreville R, Roquet F, Stibbe O, Vivien B, Verret C, Bignand M, Travers S, Martinaud C, Arock M, Raux M, Prunet B, Ausset S, Sailliol A, Tourtier JP; Prehospital Lyophilized Plasma (PREHO-PLYO) Study Group. Prehospital Lyophilized Plasma Transfusion for Trauma-Induced Coagulopathy in Patients at Risk for Hemorrhagic Shock: A Randomized Clinical Trial. JAMA network open. 2022;5(7):e2223619. https://doi.org/10.1001/jamanetworkopen.2022.23619
  36. Cordier PY, Benoit C, Belot-De Saint Leger F, Pauleau G, Goudard Y. Lessons Learned on the Battlefield Applied in a Civilian Setting. Journal of special operations medicine. 2021;21(1):102-105.  https://doi.org/10.55460/G2X5-LSPJ
  37. Buckley L, Gonzales R. Challenges to producing novel therapies — dried plasma for use in trauma and critical care. Transfusion. 2019;59(S1):837-845.  https://doi.org/10.1111/trf.14985
  38. Klein MK, Tsihlis ND, Pritts TA, Kibbe MR. Emerging Therapies for Prehospital Control of Hemorrhage. The Journal of surgical research. 2020;248:182-190.  https://doi.org/10.1016/j.jss.2019.09.070
  39. Grottke O, Mallaiah S, Karkouti K, Saner F, Haas T. Fibrinogen Supplementation and Its Indications. Seminars in thrombosis and hemostasis. 2020;46(1):38-49.  https://doi.org/10.1055/s-0039-1696946
  40. Innerhofer N, Treichl B, Rugg C, Fries D, Mittermayr M, Hell T, Oswald E, Innerhofer P, On Behalf Of The Retic Study Group. First-Line Administration of Fibrinogen Concentrate in the Bleeding Trauma Patient: Searching for Effective Dosages and Optimal Post-Treatment Levels Limiting Massive Transfusion-Further Results of the RETIC Study. Journal of clinical medicine. 2021;10(17):3930. https://doi.org/10.3390/jcm10173930
  41. Demirel M, Kendirci AŞ, Özmen E, Polat G. Use of Recombinant Factor VIIa for Bleeding Control in Treatment of Acute Extremity Compartment Syndrome Secondary to Primary Myelofibrosis: A Case Report. JBJS case connector. 2021;11(3). https://doi.org/10.2106/JBJS.CC.21.00337
  42. Tanaka KA, Shettar S, Vandyck K, Shea SM, Abuelkasem E. Roles of Four-Factor Prothrombin Complex Concentrate in the Management of Critical Bleeding. Transfusion medicine reviews. 2021;35(4):96-103.  https://doi.org/10.1016/j.tmrv.2021.06.007
  43. Kao TW, Lee YC, Chang HT. Prothrombin Complex Concentrate for Trauma Induced Coagulopathy: A Systematic Review and Meta-Analysis. Journal of acute medicine. 2021;11(3):81-89.  https://doi.org/10.6705/j.jacme.202109_11(3).0001
  44. Dyer MR, Hickman D, Luc N, Haldeman S, Loughran P, Pawlowski C, Sen Gupta A, Neal MD. Intravenous administration of synthetic platelets (SynthoPlate) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis. The journal of trauma and acute care surgery. 2018;84(6):917-923.  https://doi.org/10.1097/TA.0000000000001893
  45. Hickman DA, Pawlowski CL, Shevitz A, Luc NF, Kim A, Girish A, Marks J, Ganjoo S, Huang S, Niedoba E, Sekhon UDS, Sun M, Dyer M, Neal MD, Kashyap VS, Sen Gupta A. Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve ‘golden hour’ survival in a porcine model of traumatic arterial hemorrhage. Scientific reports. 2018;8(1):3118. https://doi.org/10.1038/s41598-018-21384-z
  46. Lamm RJ, Pichon TJ, Huyan F, Wang X, Prossnitz AN, Manner KT, White NJ, Pun SH. Optimizing the Polymer Chemistry and Synthesis Method of PolySTAT, an Injectable Hemostat. ACS biomaterials science & engineering. 2020;6(12):7011-7020. https://doi.org/10.1021/acsbiomaterials.0c01189
  47. Prudovsky I, Kacer D, Zucco VV, Palmeri M, Falank C, Kramer R, Carter D, Rappold J. Tranexamic acid: Beyond antifibrinolysis. Transfusion. 2022;62 Suppl 1:S301-S312. https://doi.org/10.1111/trf.16976
  48. Biffi A, Porcu G, Castellini G, Napoletano A, Coclite D, D’Angelo D, Fauci AJ, Iacorossi L, Latina R, Salomone K, Iannone P, Gianola S, Chiara O; Italian National Institute of Health Guideline Working Group. Systemic hemostatic agents initiated in trauma patients in the pre-hospital setting: a systematic review. European journal of trauma and emergency surgery. 2023;49(3):1259-1270. https://doi.org/10.1007/s00068-022-02185-6
  49. Weng S, Wang W, Wei Q, Lan H, Su J, Xu Y. Effect of Tranexamic Acid in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. World neurosurgery. 2019;123:128-135.  https://doi.org/10.1016/j.wneu.2018.11.214
  50. Song JX, Wu JX, Zhong H, Chen W, Zheng JC. Therapeutic efficacy of tranexamic acid on traumatic brain injury: a systematic review and meta-analysis. Scandinavian journal of trauma, resuscitation and emergency medicine. 2024;32(1):18.  https://doi.org/10.1186/s13049-024-01188-z
  51. July J, Pranata R. Tranexamic acid is associated with reduced mortality, hemorrhagic expansion, and vascular occlusive events in traumatic brain injury — meta-analysis of randomized controlled trials. BMC neurology. 2020;20(1):119.  https://doi.org/10.1186/s12883-020-01694-4
  52. Chen H, Chen M. The efficacy of tranexamic acid for brain injury: A meta-analysis of randomized controlled trials. The American journal of emergency medicine. 2020;38(2):364-370.  https://doi.org/10.1016/j.ajem.2019.158499
  53. Posternak GI, Lesnoy VV. The place of a tourniquet in the modern algorithm for temporary stopping of bleeding at the prehospital stage. Emergency Medicine. 2017;4(83):57-60. (In Russ.).
  54. Moiseeva VA, Bukina LN, Ukolova NV, Trishina AA. Comparison of characteristics of hemostatic tourniquets. Symbol of Science. 2023;7-2:59-61. (In Russ.).
  55. Golovko KP, Nosov AM, Demchenko KN, Zhirnova NA, Tyurin IR, Nevsky KD, Cheprakova VA. Comparative tests of tourniquets and an elastic tourniquet to stop ongoing bleeding at the prehospital stage of providing care. Emergency Medical Care. 2024;N25(1):55-63. (In Russ.). https://doi.org/10.24884/2072-6716-2024-25-1-55-63
  56. Trusov VA, Kuperin AS, Gomenyuk DT. Complications during tourniquet application on the battlefield. Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region. 2018;3(22):60-63. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.