The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kurbanov S.K.

Chazov National Medical Research Centre of Cardiology

Filatova A.Yu.

National Medical Research Center of Cardiology

Arefieva T.I.

National Medical Research Center of Cardiology

Ilyina L.N.

National Medical Research Center of Cardiology

Vlasova E.E.

National Medical Research Center of Cardiology

Shiryaev A.A.

Chazov National Medical Research Centre of Cardiology

Akchurin R.S.

Chazov National Medical Research Centre of Cardiology

Circulating regulatory T cells and blood monocytes subpopulations in diffuse coronary artery atherosclerosis. (A pilot study)

Authors:

Kurbanov S.K., Filatova A.Yu., Arefieva T.I., Ilyina L.N., Vlasova E.E., Shiryaev A.A., Akchurin R.S.

More about the authors

Journal: Russian Cardiology Bulletin. 2021;16(3): 28‑32

Read: 830 times


To cite this article:

Kurbanov SK, Filatova AYu, Arefieva TI, Ilyina LN, Vlasova EE, Shiryaev AA, Akchurin RS. Circulating regulatory T cells and blood monocytes subpopulations in diffuse coronary artery atherosclerosis. (A pilot study). Russian Cardiology Bulletin. 2021;16(3):28‑32. (In Russ.)
https://doi.org/10.17116/Cardiobulletin20211603128

References:

  1. Brown RA, Shantsila E, Varma C, Lip GY. Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: the role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Annals of Medicine. 2016;48(6):444-455.  https://doi.org/10.1080/07853890.2016.1190861
  2. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clinical Science. 2018;132(12):1243-1252. https://doi.org/10.1042/CS20180306
  3. Brown RA, Lip GYH, Varma C, Shantsila E. Impact of Mon2 monocyte-platelet aggregates on human coronary artery disease. European Journal of Clinical Investigation. 2018;48(5):e12911. https://doi.org/10.1111/eci.12911
  4. Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GY. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups «Atherosclerosis & Vascular Biology» and «Thrombosis». Thrombosis and Haemostasis. 2016;116(4):626-637.  https://doi.org/10.1160/TH16-02-0091
  5. Emoto T, Sasaki N, Yamashita T, Kasahara K, Yodoi K, Sasaki Y, Matsumoto T, Mizoguchi T, Hirata K. Regulatory/effector T-cell ratio is reduced in coronary artery disease. Circulation Journal. 2014;78(12):2935-2941. https://doi.org/10.1253/circj.cj-14-0644
  6. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899-911.  https://doi.org/10.1016/j.immuni.2009.03.019
  7. Potekhina AV, Pylaeva E, Provatorov S, Ruleva N, Masenko V, Noeva E, Krasnikova T, Arefieva T. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis. Atherosclerosis. 2015;238(1):17-21.  https://doi.org/10.1016/j.atherosclerosis.2014.10.088
  8. Filatova AYu, Pylaeva EA, Potekhina AV, Osokina AK, Pogorelova OA, Tripoten MI, Balakhonova TV, Provatorov SI, Noeva EA, Klesareva EA, Afanasieva OI, Arefieva TI. Subpopulations of CD4+ T-lymphocytes as factors contributing to the progression of atherosclerosis of carotid arteries. Kardiologiia. 2017;57(4):64-71. (In Russ.).
  9. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ; CANTOS Trial Group. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-328.  https://doi.org/10.1016/S0140-6736(17)32814-3
  10. Filatova AY, Potekhina AV, Pylaeva EA, Osokina AK, Ruleva NY, Pogorelova OA, Tripoten MI, Noeva EA, Balakhonova TV, Masenko VP, Arefieva TI. The severity of internal carotid artery stenosis is associated with the circulating Th17 level. Heliyon. 2020;6(5):e03856. https://doi.org/10.1016/j.heliyon.2020.e03856
  11. Liu Z, Lu F, Pan H, Zhao Y, Wang S, Sun S, Li J, Hu X, Wang L. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis. 2012;221(1):232-241.  https://doi.org/10.1016/j.atherosclerosis.2011.12.026
  12. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH. The Th17/Treg imbalance in patients with acute coronary syndrome [published correction appears in Clinical Immunology. 2009;133(3):447]. Clinical Immunology. 2008;127(1):89-97.  https://doi.org/10.1016/j.clim.2008.01.009
  13. Wigren M, Björkbacka H, Andersson L, Ljungcrantz I, Fredrikson GN, Persson M, Bryngelsson C, Hedblad B, Nilsson J. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(8):2000-2004. https://doi.org/10.1161/ATVBAHA.112.251579

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.