OBJECTIVE
To compare the neointima structure in conduits for coronary bypass grafting, bioprosthetic heart valves, tissue-engineered vascular grafts, and metal stents.
MATERIAL AND METHODS
The objects of the study were the fragments of the human internal thoracic artery, experimental biodegradable vascular prostheses, leaflets of xenopericardial bioprostheses of heart valves, and fragments of stented vessels. Tissue samples were fixed in formalin and post-fixed in osmium tetroxide. After dehydration and epoxy resin embedding, the samples were ground and polished. Samples were counterstained with uranyl acetate and lead citrate and visualized by means of backscattered scanning electron microscopy.
RESULTS
Neointimal pattern in all samples was similar. Neointima was comprised of endothelial cells, smooth muscle cells, fibroblasts, and the extracellular matrix. Endothelial cells showed significant diversity both between different elements of the circulatory system and within the same tissue, having either elongated or polygonal shape. Adhesion of leukocytes testified to the endothelial cell activation. In the absence of inflammation in the superficial layer of the neointima, the arrangement of smooth muscle cells and extracellular matrix fibers was parallel to the endothelium. Clusters of foam cells were frequently detected around the neointimal layers with solid inclusions (metal stents or calcium deposits). Thickening of the neointima was accompanied by the presence of capillaries and capillary-like structures.
CONCLUSION
Neointima formation is a typical response to the damage inflicted to the elements of the circulatory system. Neointima underwent a constant remodeling characterized by an altered cellular composition, macrophage invasion, neovascularization, and calcification.