Восстановление дефектов зубов и зубных рядов с помощью несъемных ортопедических конструкций на сегодняшний день является широко распространенным и востребованным методом лечения.
Развитие зуботехнического материаловедения, появление новых конструкционных материалов и современных методов точного изготовления каркасов несъемных протезов заставляют врача уделять все большее внимание деталям. Грамотно проведенное препарирование опорных зубов, точно снятый оттиск - от этих рутинных, но от того не менее важных процедур зависит эффективность и долговечность будущей реставрации. Одним из важнейших моментов при этом является создание прочного и долговечного соединения между реставрацией и твердыми тканями зуба, т.е. обеспечение хорошей ретенции будущей конструкции. Под ретенцией понимают способность противостоять смещению реставрации по траектории ее установки [6].
На ретенцию несъемных ортопедических конструкций влияет множество факторов, важнейшими из которых являются:
- геометрия культи, включающая такие параметры, как конусность культи, соотношение аксиальных и латеральных размеров культи, наличие вспомогательных ретенционных элементов (штифты, проточки и т.д.);
- характер контактирующих поверхностей, а именно: точное соответствие реставрации культе зуба, микрорельеф поверхности культи и реставрации;
- параметры связки: тип и свойства материала для фиксации реставрации; общая площадь цементной пленки и т.д.
В настоящей статье нам хотелось бы остановиться на влиянии микрорельефа препарированной поверхности на качество последующей реставрации.
Какое же влияние оказывает рельеф поверхности культи на ретенцию искусственной коронки? В доступной научной литературе нет однозначного ответа на этот вопрос. Большое значение здесь отводится типу фиксирующего цемента и его способности образовывать прочную связь с твердыми тканями зуба.
Прежде чем продолжить рассмотрение этого вопроса, представляется необходимым конкретизировать используемую терминологию, а именно такой термин, как адгезия и производные от него. Многозначность и неопределенность термина адгезия, встречающаяся в научных публикациях, является следствием отсутствия в научном сообществе точного определения данного понятия. Отсутствие лексической договоренности зачастую затрудняет понимание сути данного явления и, как следствие, ведет к ложному представлению о свойствах материалов.
Наиболее ясным, с нашей точки зрения, нужно признать определение адгезии как явления «возникновения межмолекулярного взаимодействия между приведенными в контакт разнородными конденсированными фазами» [2]. Данное определение подразумевает обязательным условием адгезионного соединения образование между двумя контактирующими поверхностями межмолекулярных связей. Таким образом, фиксирующие цементы, принцип взаимодействия которых с поверхностью эмали и дентина основан лишь на механическом сцеплении за счет неровностей рельефа, следует относить к группе неадгезивных.
Для фиксации литых реставраций существует широкий спектр различных материалов. На протяжении длительного времени для этих целей использовался цинк-фосфатный цемент. Известно, что этот цемент не обладает адгезией к эмали и дентину, т.е. связь зуба и реставрации посредством цинк-фосфатного цемента осуществляется за счет наличия неровностей (шероховатостей) на встречных поверхностях. Особенностью данного материала является его способность эффективно смачивать поверхность благодаря низкому поверхностному натяжению. Это объясняется слабыми когезионными силами между молекулами в свежезамешанном цементе, что выражается в пониженной вязкости и соответственно высокой текучести [23]. Данная особенность позволяет несхватившемуся цементу затекать во все неровности поверхности, формируя, таким образом, прочную механическую связь со структурами зуба.
Из изложенного выше следует, что шероховатая поверхность культи зуба будет способствовать ретенции литых реставраций, фиксированных на цинк-фосфатный цемент. Данное предположение подтвердила работа G. Oilo и K. Jorgensen [24], в которой было продемонстрировано, что ретенция литых металлических реставраций была в 2 раза выше при наличии поверхности с бороздками глубиной 40 мкм, чем поверхности с бороздками глубиной 10 мкм.
Сходные результаты были получены D. Felton и соавт. [15], которые показали, что ретенция литых коронок возрастала более чем на 30% в случае обработки культи зуба алмазным инструментом по сравнению с обработкой финишным твердосплавным бором. На прямую зависимость ретенции литых реставраций от шероховатости поверхности культи при использовании цинк-фосфатного цемента также указывают N. Juntavee и L. Millstein [20].
Подробное исследование на эту тему было проведено M. Ayad и соавт., которые изучили силу ретенции трех видов цементов к поверхности зуба, обработанной различными типами инструментов. Авторы показали, что при фиксации на цинк-фосфатный цемент лучшей ретенцией искусственные коронки обладали в случае, если культя зуба была обработана твердосплавным зубчатым бором. Несколько худшими были результаты после обработки зубов алмазным инструментом, а наименьшую ретенцию демонстрировали культи, отполированные с помощью финишного твердосплавного бора [9].
Н. Крунич [1], сравнивая обработку аксиальных стенок культи алмазными борами с черной (размер алмазных частиц 150-180 мкм) и красной маркировкой (размер частиц 20-42 мкм), показал, что с ростом шероховатости поверхности увеличивается ретенция литых коронок, зафиксированных на цинк-фосфатный цемент. В другом исследовании B. Smith [31] также обнаружил различия в ретенции металлических реставраций, зафиксированных с помощью цинк-фосфатного цемента на зубах, шероховатость поверхности которых варьировала от 6 до 118 мкм (от 0,15 до 3 мкм). При этом в данном исследовании степень ретенции также возрастала по мере увеличения шероховатости культи, но результаты не были статистически достоверны. Нужно отметить, что исследуемые автором значения шероховатости были слишком малы для того, чтобы оказать сколько-нибудь клинически значимое влияние на ретенцию искусственной коронки.
Результаты приведенных выше работ демонстрируют существенное влияние рельефа поверхности культи на ретенцию реставраций при использовании неадгезивного цемента. Принципиально отличается характер соединения с поверхностью зуба у адгезивных цементов, к которым относится большинство из представленных сегодня на стоматологическом рынке материалов для фиксации. На принципе формирования химической связи с твердыми тканями зуба основаны свойства поликарбоксилатного и стеклоиономерного цементов. В особую группу по характеру взаимодействия с твердыми тканями зуба можно выделить композитные цементы. Механизм их сцепления с эмалью и дентином нельзя однозначно охарактеризовать только как химическое или физическое взаимодействие, хотя несомненно, этот класс материалов следует отнести к адгезивным.
Для использования преимуществ адгезивных цементов и обеспечения хорошей ретенции большое значение имеет максимальный контакт фиксирующего материала с препарированной поверхностью [28, 29]. Излишняя шероховатость рельефа может ослабить фиксацию реставрации вследствие образования пузырьков воздуха или скопления дентинных опилок в неровностях поверхности, что затруднит смачивание цементом дентина и будет препятствовать образованию ван-дер-ваальсовых связей и затем химических связей.
В своей работе M. Negm и соавт. [22] показали, что в случае фиксации искусственных коронок на поликарбоксилатный цемент шероховатая поверхность хотя и уменьшала прочность связи коронки с культей зуба на растяжение, тем не менее увеличивала ее прочность на сдвиг [22]. В работе D. Witwer [36] продемонстрировано, что поликарбоксилатный цемент обеспечивал лучшую ретенцию реставраций тогда, когда поверхность зуба была более шероховатой. В другом исследовании А. Tjan и соавт. [32] показали, что сглаживание поверхности культи при фиксации на стеклоиономерный цемент не оказывает существенного влияния на ретенцию литых реставраций. К такому же выводу пришли M. Ayad и соавт. [9], изучая адгезию стеклоиономерного и композитного цементов к поверхности дентина, препарированного различными типами боров. Авторы показали, что хотя ретенция реставраций, фиксированных на стеклоиономерный цемент, и увеличивалась при использовании алмазного и твердосплавного зубчатого боров по сравнению со сглаживанием поверхности культи, данные результаты были статистически недостоверны. Что касается адгезии композитного цемента, то в данном случае тип инструмента для препарирования практически не влиял на степень ретенции.
Приведенные исследования демонстрируют влияние характера поверхности аксиальных стенок культи на ретенцию несъемных ортопедических конструкций. Совсем иное значение имеет качество обработки поверхности уступа. Возможно, самым важным аспектом в данном случае становится излишняя шероховатость поверхности в области уступа, что ведет к недостаточно плотному краевому прилеганию реставрации [12]. Неровности, образующиеся во время препарирования в области уступа, невозможно воспроизвести в крае каркаса, следовательно, для создания реставрации с хорошим краевым прилеганием обязательно наличие гладкой и четкой границы препарирования [6].
Подводя итог вышесказанному, следует отметить, что микрорельеф или шероховатость поверхности культи является важным фактором, от которого зависит ретенция, а также точность прилегания искусственной коронки к тканям зуба.
В свою очередь шероховатость культи зависит от многих факторов, таких как скорость препарирования, давление, оказываемое на инструмент во время препарирования, наличие и эффективность водно-воздушного охлаждения и т.д. [4, 33]. Но главным фактором, определяющим характер препарированной поверхности, безусловно, является тип инструмента для препарирования [7, 8].
Все вращающиеся инструменты для препарирования зубов под несъемные ортопедические конструкции можно разделить на две категории: абразивные и режущие. Наиболее эффективным и часто применяемым абразивным материалом для иссечения твердых тканей зуба является алмазная частица. Поэтому к абразивным инструментам относятся в первую очередь инструменты с алмазным покрытием рабочей части. Следует отметить, что такой общепринятый термин, как «алмазный бор», является не вполне корректным, так как рабочая часть данного инструмента не изготовлена из алмаза. Алмазные частицы лишь покрывают поверхность стальной заготовки инструмента. Тем не менее имеет смысл использовать этот короткий и привычный термин для обозначения абразивных инструментов с алмазным покрытием рабочей части.
Абразивные инструменты удаляют твердые ткани зуба путем стачивания, снятие субстрата осуществляется большим количеством беспорядочно расположенных алмазных зерен, каждое из которых удаляет небольшой фрагмент твердых тканей зуба, образуя мельчайшие углубления.
К режущим инструментам прежде всего относятся карбид-вольфрамовые (твердосплавные) боры. Бор представляет собой металлический стержень с острыми гранями, которые и выполняют режущую функцию. Каждая грань такого инструмента срезает с поверхности слой материала определенной толщины, зависящей от угла заточки лезвий, давления на инструмент, сопротивления субстрата и т.д. [3, 5].
Считается, что для обработки наиболее твердой ткани зуба - эмали целесообразно использовать алмазные инструменты, а твердосплавные боры оптимальны для точного препарирования более мягкого дентина и создания границ, т.е. для эффективного использования преимуществ обоих типов инструментов алмазные боры рекомендуется применять для иссечения больших объемов тканей, а твердосплавные - на завершающих этапах препарирования. Причем наилучшим образом такая последовательность применения инструментов работает в случае использования боров одинаковой формы и размера [6].
Некоторое время назад компанией «SS White Burs, Inc.» была выпущена оригинальная серия твердосплавных боров под названием Great White Ultra. Данные инструменты рекомендованы производителем для препарирования зубов под искусственные коронки и сочетают агрессивный дизайн боковых граней с поперечными насечками для быстрого и эффективного удаления эмали и дентина и лишенный насечек кончик бора для создания гладкой границы препарирования. В связи с этим представляется интересным провести сравнительный анализ качества препарирования зубов с помощью нового твердосплавного бора и традиционного алмазного инструмента.
Целью настоящего исследования явилась оценка характера поверхности, полученной при препарировании зубов под несъемные ортопедические конструкции с помощью алмазных и твердосплавных ротационных инструментов.
Материал и методы
Для сравнительной оценки двух различных типов боров в качестве инструмента с режущей рабочей поверхностью был выбран твердосплавный бор GWU №856-018 («SS White Burs, Inc.»). В качестве абразивного инструмента использовался алмазный бор FGCR №856-018 («SS White Burs, Inc.») с зеленым маркировочным кольцом на хвостовике. Данный бор полностью соответствует по геометрической форме и размерам бору GWU №856-018 и также предназначен для быстрого удаления больших объемов твердых тканей зуба в процессе одонтопрепарирования (рис. 1, 2).
Материалом исследования служили 20 интактных человеческих премоляров верхней челюсти, удаленных по пародонтологическим показаниям у пациентов обоих полов в возрасте от 35 до 55 лет. Зубы отбирались в эксперимент не позднее 20 мин после их удаления из полости рта. Сразу после удаления зубы были подвергнуты тщательной механической очистке и дезинфекции и помещены в 0,09% раствор хлорида натрия, в котором хранились при комнатной температуре до момента проведения эксперимента, но не более 2 нед.
Все образцы были разделены на две группы по 10 зубов в каждой. Зубы 1-й группы были последовательно препарированы одним и тем же твердосплавным бором GWU 856-018; препарирование зубов 2-й группы последовательно проведено одним и тем же алмазным бором FGCR 856-018.
Во всех случаях препарирование было осуществлено при скорости вращения бора 300 000 об/мин турбинным наконечником TREND TC–95 RM (W&H, Австрия) с одной апертурой для подачи водно-воздушного потока. Уровень интенсивности водно-воздушного охлаждения при препарировании всех образцов зубов определялся расходом воды 40±2 мл/мин.
Все образцы зубов были препарированы под литую коронку с циркулярным полукруглым уступом.
Электронная микроскопия препарированных поверхностей зубов выполнена на электронном сканирующем микроскопе JEOL JSM-840А со стандартным разрешением 4 нм при ускоряющем напряжении 10 кВ и увеличении от 40 до 1000.
Перед проведением электронно-микроскопического исследования все образцы препарированных зубов были зафиксированы на предметных столиках с помощью токопроводящего клея Watford (Англия). Затем они были помещены в вакуумную камеру аппарата JEOL FINE COAT Ion Sputter JFC 1100 при силе тока 5 мА на 15 мин для нанесения на поверхность образцов тонкой проводящей пленки золота (рис. 3, 4).
Электронная микроскопия рабочих частей алмазных и твердосплавных боров была проведена на электронном сканирующем микроскопе JEOL JSM-840A со стандартным разрешением 4 нм при ускоряющем напряжении 10-40 кВ.
После того как боры были размещены на предметных столиках и фиксированы в выбранном положении с помощью токопроводящего клея Watford (Англия), они были помещены в камеру микроскопа. Исследования проводили при увеличении от 30 до 1000.
Результаты
Часть 1. Препарирование алмазными инструментами
1.1. Исследование рельефа аксиальных стенок
Изучение профиля поверхности дентина при увеличении 70 показывает, что микрорельеф аксиальных стенок культи, препарированных новым алмазным инструментом, представлен множеством чередующихся борозд и гребней, идущих перпендикулярно к продольной оси зуба и параллельно направлению движения инструмента при препарировании (рис. 5).
Данный характер рельефа стенок культи, препарированных алмазными борами, обусловлен особенностями абразивных инструментов, связанными с технологией их изготовления.
Известно, что алмазные частицы, покрывающие поверхность алмазных боров, значительно варьируют по размерам даже в пределах одного инструмента. При этом алмазные зерна, как правило, имеют неправильную форму. Так, с помощью сканирующей электронной микроскопии нами было установлено, что максимальные размеры алмазных зерен инструмента FGCR 856-018 («SS White Burs, Inc.») с зеленой маркировкой на хвостовике (Coarse) лежат в диапазоне от 140 до 190 мкм при среднем размере частиц 170 мкм. Кроме того, в процессе их нанесения на поверхность стальной заготовки инструмента методом гальванопластики отдельные зерна оказываются в различной степени погруженными в металлическую связку. Все это ведет к тому, что алмазные частицы выступают над поверхностью инструмента на различную высоту (рис. 6).
Образование борозд первого уровня обусловлено прохождением по поверхности дентина наиболее выступающих алмазных частиц. Менее глубокие борозды второго уровня глубиной 20-25 мкм, вероятно, образуются вследствие работы зерен, выступающих из связки на меньшую высоту. И те и другие зерна являются режущими, и именно они ответственны за формирование характерного рельефа поверхности. Так, на рис. 6 видно, что некоторые алмазные зерна могут выступать над поверхностью металлической связки на высоту до 120 мкм, другие выстоят из связки чуть меньше (119 мкм – 21 мкм = 98 мкм). Данная разница значений вполне соответствует разнице величин между бороздами первого и второго уровня (40 мкм – 20 мкм = 20 мкм).
Большая часть алмазных зерен выступает из связки на значительно меньшую высоту, и, следовательно, не участвует в формировании рельефа поверхности. Данный вывод подтверждается тем фактом, что расстояние между ними и наиболее выступающими зернами превышает максимальный размер неровностей рельефа (119 мкм – 54 мкм = 65 мкм; 65 мкм >40 мкм).
Как видно из графического анализа рис. 5 и 6, размерные характеристики элементов рельефа поверхности зуба не соответствуют таковым на поверхности алмазного бора. Следовательно, можно предположить, что полного погружения всех зерен до основания в субстрат, т.е. в дентин зуба, не происходит. По-видимому, это обусловлено как некоторым сопротивлением субстрата, так и заполнением режущего рельефа инструмента органическими и неорганическими компонентами дентина, что препятствует дальнейшему погружению бора в субстрат и снижает его эффективность.
При исследовании микрорельефа аксиальных стенок культи при увеличении 250 (рис. 7)
Бороздки третьего уровня, по-видимому, являются следствием сложной конфигурации самой алмазной частицы. Поверхность каждой алмазной частицы имеет неровности. Различают микровыступы, рельеф которых неоднороден и содержит так называемые субмикровыступы (рис. 8).
На рис. 9, а
Исследование дентина при увеличении 1000 (рис. 9, б)
Образование смазанного слоя при препарировании зубов алмазными инструментами связано с особенностями механизма абразивной обработки, оказывающей существенное влияние на характер получаемой поверхности.
Шлифованная поверхность образуется вследствие одновременного действия как геометрических факторов, характерных для процесса резания, так и пластических деформаций, сопровождающих этот процесс. С геометрической точки зрения, шероховатость образуется в результате копирования на обрабатываемой поверхности траекторий движения отдельных абразивных зерен. Происходящее же при этом пластическое деформирование сильно искажает микрорельеф поверхности, полученной в результате действия геометрических факторов. Поэтому шлифованная поверхность не может представлять собой лишь массу параллельных рисок как точное воспроизведение или след движения абразивных зерен.
Существуют значительные различия в характере взаимодействия отдельных абразивных зерен с обрабатываемой поверхностью. Как отмечалось выше, зерна выступают над поверхностью связки на различную высоту, поэтому в процессе препарирования снятие субстрата осуществляют только наиболее выступающие зерна, которые и являются режущими. Другие зерна, расположенные глубже, врезаются в обрабатываемую поверхность на такую незначительную глубину, что происходит лишь пластическое «выдавливание» и деформирование субстрата без снятия стружки. И наконец, большинство зерен выступают из связки на такую высоту, что вообще не способны войти в контакт с обрабатываемой поверхностью и являются нережущими (см. рис. 6).
Следовательно, в реальном процессе абразивной обработки большая часть зерен не режет, а так или иначе пластически деформирует поверхностный слой дентина. Врезаясь в субстрат, кромка зерна сначала сдавливает его, и если это воздействие по силе превосходит возможности сопротивления дентина, происходит отделение стружки. Другими словами, процесс образования стружки сопровождается пластическим деформированием поверхности субстрата, в результате которого имеет место изменение формы и свойств поверхностного слоя.
В результате нагрева, большого давления на инструмент при препарировании и возникающих при этом пластических деформаций наблюдается так называемое размазывание материала по обработанной поверхности. Эти явления изменяют рельеф поверхности дентина по сравнению с рельефом, образованным чисто геометрическими факторами.
1.2. Исследование поверхности уступа
На рис. 10
Глубокие трещины на поверхности дентина не связаны с процессом препарирования, а являются следствием внутренних напряжений, возникших в процессе обязательного высушивания образцов зубов перед нанесением на их поверхность проводящей пленки золота. Такой вывод можно сделать исходя из того, что число таких трещин невелико, а их края четко совпадают между собой. Это значит, что они образовались уже после того, как препарирование было завершено.
Таким образом, в процессе препарирования твердых тканей зуба алмазными инструментами формируется характерный микрорельеф поверхности с большим количеством неровностей различного уровня, в том числе и в области уступа, покрытой сравнительно толстым смазанным слоем.
Часть 2. Препарирование твердосплавными инструментами
2.1. Исследование рельефа аксиальных стенок
На рис. 11
Изучение профиля препарированной поверхности при увеличении 70 (рис. 12)
Из приведенных выше данных следует, что полученный рельеф не является всего лишь негативным отображением геометрии режущих лезвий бора (рис. 13),
При исследовании микрорельефа аксиальных стенок культи при увеличении 200 (рис. 14, а)
При исследовании той же области при увеличении 1000 (рис. 14, б)
Видно, что смазанный слой достаточно плотный, однородный и покрывает всю поверхность дентина. Тем не менее он не вызывает полного закрытия просветов дентинных трубочек. Кроме того, можно наблюдать так называемый эффект частичного «проваливания» смазанного слоя внутрь просвета дентинных канальцев. Это явление свидетельствует о небольшой толщине смазанного слоя, сопоставимой с диаметром просвета дентинных трубочек, т.е. его толщина, вероятно, не превышает 1-2 мкм.
При препарировании поверхности дентина с помощью твердосплавного бора формирование смазанного слоя неизбежно, так как имеет место пластическая деформация поверхностного слоя. Однако эти пластические деформации значительно менее выражены, нежели в случае абразивной обработки поверхности, что связано с различиями в конструкции режущих и абразивных инструментов (см. раздел 1.1). Степень пластической деформации поверхностного дентина, а значит и толщина смазанного слоя, зависит от многих факторов, таких как значение главного переднего угла инструмента (величиной этого угла определяется режущая эффективность бора), скорость обработки, давление на инструмент при препарировании, применение водно-воздушного охлаждения и износ инструмента.
На поверхности дентина видны также тонкие продольные царапины, являющиеся, вероятно, результатом воздействия микронеровностей на режущих кромках инструмента. Эти неровности могут быть обусловлены металлургическими дефектами, возникающими в процессе вытачивания характерного дизайна инструмента из цельной карбид-вольфрамовой заготовки (рис. 15).
2.2. Исследование поверхности уступа
На рис. 16