The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Shurygina O.V.

Samara State Medical University

Rozhnova A.A.

Samara State Medical University

Guseva O.S.

Samara State Medical University

Petrova A.A.

Samara State Medical University

Minaeva T.V.

Samara State Medical University

A challenge of the embryo selection: PGT-A-based diagnostics or prediction using an artificial intelligece and time-lapse technology?

Authors:

Shurygina O.V., Rozhnova A.A., Guseva O.S., Petrova A.A., Minaeva T.V.

More about the authors

Journal: Russian Journal of Human Reproduction. 2024;30(6): 99‑107

Read: 763 times


To cite this article:

Shurygina OV, Rozhnova AA, Guseva OS, Petrova AA, Minaeva TV. A challenge of the embryo selection: PGT-A-based diagnostics or prediction using an artificial intelligece and time-lapse technology? Russian Journal of Human Reproduction. 2024;30(6):99‑107. (In Russ.)
https://doi.org/10.17116/repro20243006199

References:

  1. De Munck N, Bayram A, Elkhatib I, Liñán A, Arnanz A, Melado L, Lawrenz B, Fatemi MH. Segmental duplications and monosomies are linked to in vitro developmental arrest. Journal of Assisted Reproduction and Genetics. 2021;38(8):2183-2192. https://doi.org/10.1007/s10815-021-02147-8
  2. Paya E, Pulgarín C, Bori L, Colomer A, Naranjo V, Meseguer M. Deep learning system for classification of ploidy status using time-lapse videos. F and S Science. 2023;4(3):211-218.  https://doi.org/10.1016/j.xfss.2023.06.002
  3. Tiitinen A. Single embryo transfer: Why and how to identify the embryo with the best developmental potential. Best Practice and Research Clinical Endocrinology and Metabolism. 2019;33(1):77-88.  https://doi.org/10.1016/j.beem.2019.04.001
  4. Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Human Reproduction Update. 2023;29(5):570-633.  https://doi.org/10.1093/humupd/dmad010
  5. Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, Briones YG, Lim AYX, Dakka MA, Nguyen TV, Perugini D, Perugini M. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Human Reproduction. 2022;37(8):1746-1759. https://doi.org/10.1093/humrep/deac131
  6. VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Human Reproduction. 2020;35(4):770-784.  https://doi.org/10.1093/humrep/deaa013
  7. Zou H, Wang R, Morbeck DE. Diagnostic or prognostic? Decoding the role of embryo selection on in vitro fertilization treatment outcomes. Fertility and Sterility. 2024;121(5):730-736.  https://doi.org/10.1016/j.fertnstert.2024.01.005
  8. Zhukov OB, Chernykh VB. Artificial intelligence in reproductive medicine. Andrologiya i genital’naya khirurgiya. 2022;23(4):15-25. (In Russ.). https://doi.org/10.17650/2070-9781-2022-23-4-00-00
  9. Shurygina OV, Vasilenko OYu, Yukhimets SN, Shipulin NA. The history, opportunities and prospects of time-lapse technologies in the study of early human embryonic development. Morfologicheskie vedomosti. 2021;29(1):9-19. (In Russ.). https://doi.org/10.20340/mv-mn.2021.29(1).9-19
  10. Gazzo E, Peña F, Valdéz F, Chung A, Bonomini C, Ascenzo M, Velit M, Escudero E. The Kidscore(TM) D5 algorithm as an additional tool to morphological assessment and PGT-A in embryo selection: a time-lapse study. JBRA Assisted Reproduction. 2020; 24(1):55-60.  https://doi.org/10.5935/1518-0557.20190054
  11. Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. Journal of Assisted Reproduction and Genetics. 2019;36(4):591-600.  https://doi.org/10.1007/s10815-019-01408-x
  12. He H, Wu L, Chen Y, Li T, Ren X, Hu J, Liu J, Chen W, Ma B, Zou Y, Liu Z, Lu S, Huang B, Jin L. A novel non-invasive embryo evaluation method (NICS-Timelapse) with enhanced predictive precision and clinical impact. Heliyon. 2024;10(9):e30189. https://doi.org/10.1016/j.heliyon.2024.e30189
  13. Braga DP de AF, Setti AS, Guilherme P, Morishima C, Iaconelli AJ, Borges EJ. Time-lapse monitoring: An adjunct tool to select embryos for preimplantation genetic testing. Molecular Reproduction and Development. 2023;90(6):389-396.  https://doi.org/10.1002/mrd.23692
  14. Shenoy CC, Bader A, Walker DL, Fredrickson JR, Weaver AL, Zhao Y. Embryo Blastomere Exclusion Identified in a Time-Lapse Culture System Is Associated with Embryo Ploidy. Reproductive Sciences. 2023;30(6):1911-1916. https://doi.org/10.1007/s43032-022-01141-4
  15. Zou Y, Pan Y, Ge N, Xu Y, Gu R, Li Z, Fu J, Gao J, Sun X, Sun Y. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation? Reproductive BioMedicine Online. 2022;45(4):643-651.  https://doi.org/10.1016/j.rbmo.2022.06.007
  16. Shenoy CC, Khan Z, Coddington CC, Stewart EA, Morbeck DE. Symmetry at the 4-Cell Stage Is Associated with Embryo Aneuploidy. Reproductive Sciences. 2021;28(12):3473-3479. https://doi.org/10.1007/s43032-021-00758-1
  17. Tvrdonova K, Belaskova S, Rumpikova T, Malenovska A, Rumpik D, Myslivcova Fucikova A, Malir F. Differences in Morphokinetic Parameters and Incidence of Multinucleations in Human Embryos of Genetically Normal, Abnormal and Euploid Embryos Leading to Clinical Pregnancy. Journal of Clinical Medicine. 2021;10(21): 10215173. https://doi.org/10.3390/jcm10215173
  18. Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Human Reproduction. 2016;31(10):2245-2254. https://doi.org/10.1093/humrep/dew183
  19. Pons MC, Carrasco B, Parriego M, Boada M, González-Foruria I, Garcia S, Coroleu B, Barri PN, Veiga A. Deconstructing the myth of poor prognosis for fast-cleaving embryos on day 3. Is it time to change the consensus? Journal of Assisted Reproduction and Genetics. 2019;36(11):2299-2305. https://doi.org/10.1007/s10815-019-01574-y
  20. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, Nagy ZP, Ubaldi FM. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Human Reproduction. 2014;29(6):1173-1181. https://doi.org/10.1093/humrep/deu033
  21. Reignier A, Lammers J, Barriere P, Freour T. Can time-lapse parameters predict embryo ploidy? A systematic review. Reproductive BioMedicine Online. 2018;36(4):380-387.  https://doi.org/10.1016/j.rbmo.2018.01.001
  22. Trofimenko AI, Pevzner DA, Lazarev VV, Lysov EE, Parasun’ko TR. Major embryonic development visualization methods review. Nauka molodykh. 2021;9(1):125-35. (In Russ.). https://doi.org/10.23888/HMJ202191121-135
  23. Saraeva NV, Spiridonova NV, Tugushev MT, Shurygina OV, Sinitsyna A.I. Optimization of a single-embryo transfer by using time-lapse microscopy in IVF and ICSI programs. Meditsinskij sovet. 2020;13:188-194. (In Russ.). https://doi.org/10.21518/2079-701X-2020-13-188-194
  24. Savostina GV, Perminova SG, Timofeeva AV, Veyukova MA. Modern methods for assessment of the implantation potential of embryos in assisted reproductive programs. Doktor.Ru. 2021;20(8):12-18. (In Russ.). https://doi.org/10.31550/1727-2378-2021-20-8-12-18
  25. Valera MA, Aparicio-Ruiz B, Pérez-Albalá S, Romany L, Remohí J, Meseguer M. Clinical validation of an automatic classification algorithm applied on cleavage stage embryos: analysis for blastulation, euploidy, implantation, and live-birth potential. Human Reproduction. 2023;38(6):1060-1075. https://doi.org/10.1093/humrep/dead058
  26. Bori L, Meseguer F, Valera MA, Galan A, Remohi J, Meseguer M. The higher the score, the better the clinical outcome: retrospective evaluation of automatic embryo grading as a support tool for embryo selection in IVF laboratories. Human Reproduction. 2022;37(6): 1148-1160. https://doi.org/10.1093/humrep/deac066
  27. Lagalla C, Coticchio G, Sciajno R, Tarozzi N, Zacà C, Borini A. Alternative patterns of partial embryo compaction: prevalence, morphokinetic history and possible implications. Reproductive BioMedicine Online. 2020;40(3):347-354.  https://doi.org/10.1016/j.rbmo.2019.11.011
  28. Park JK, Jeon Y, Bang S, Kim JW, Kwak IP, Lee WS. Time-lapse imaging of morula compaction for selecting high-quality blastocysts: a retrospective cohort study. Archives of Gynecology and Obstetrics. 2024;309(6):2897-2906. https://doi.org/10.1007/s00404-024-07461-x
  29. Rienzi L, Cimadomo D, Delgado A, Minasi MG, Fabozzi G, Gallego RD, Stoppa M, Bellver J, Giancani A, Esbert M, Capalbo A, Remohì J, Greco E, Ubaldi FM, Meseguer M. Time of morulation and trophectoderm quality are predictors of a live birth after euploid blastocyst transfer: a multicenter study. Fertility and Sterility 2019; 112(6):1080-1093.e1.  https://doi.org/10.1016/j.fertnstert.2019.07.1322
  30. Cimadomo D, Chiappetta V, Innocenti F, Saturno G, Taggi M, Marconetto A, Casciani V, Albricci L, Maggiulli R, Coticchio G, Ahlström A, Berntsen J, Larman M, Borini A, Vaiarelli A, Ubaldi FM, Rienzi L. Towards Automation in IVF: Pre-Clinical Validation of a Deep Learning-Based Embryo Grading System during PGT-A Cycles. Journal of Clinical Medicine. 2023;12(5). https://doi.org/10.3390/jcm12051806
  31. Tsai NC, Chang YC, Su YR, Lin YC, Weng PL, Cheng YH, Li YL, Lan KC. Validation of Non-Invasive Preimplantation Genetic Screening Using a Routine IVF Laboratory Workflow. Biomedicines. 2022;10(6). https://doi.org/10.3390/biomedicines10061386
  32. De Martin H, Bonetti TCS, Nissel CAZ, Gomes AP, Fujii MG, Monteleone PAA. Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy. Scientific Reports. 2024;14(1):739.  https://doi.org/10.1038/s41598-023-51087-z
  33. Bamford T, Barrie A, Montgomery S, Dhillon-Smith R, Campbell A, Easter C, Coomarasamy A. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis. Human Reproduction Update. 2022;28(5):656-686.  https://doi.org/10.1093/humupd/dmac022
  34. Ma BX, Zhao GN, Yi ZF, Yang YL, Jin L, Huang B. Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction. Reproductive Biology and Endocrinology. 2024;22(1):58.  https://doi.org/10.1186/s12958-024-01230-w
  35. Urich M, Ugur MR, Li F, Shamma FN, Hammoud A, Cottrell HN, Dogan S. Comparison of two culture media on morphokinetics and ploidy status of sibling embryos. Zygote. 2022;30(3):410-415.  https://doi.org/10.1017/S0967199421000927
  36. Fadon P, Gallegos E, Jalota S, Muriel L, Diaz-Garcia C. Time-Lapse Systems: A Comprehensive Analysis on Effectiveness. Seminars in Reproductive Medicine. 2021;39(5-6):e12-18.  https://doi.org/10.1055/s-0041-1742149
  37. Coticchio G, Barrie A, Lagalla C, Borini A, Fishel S, Griffin D, Campbell A. Plasticity of the human preimplantation embryo: developmental dogmas, variations on themes and self-correction. Human Reproduction Update. 2021;27(5):848-865.  https://doi.org/10.1093/humupd/dmab016
  38. Lee CI, Huang CC, Lee TH, Chen HH, Cheng EH, Lin PY, Yu TN, Chen CI, Chen CH, Lee MS. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles. Reproductive Biology and Endocrinology. 2024;22(1):12.  https://doi.org/10.1186/s12958-024-01185-y
  39. Lammers J, Reignier A, Splingart C, Moradkhani K, Barrière P, Fréour T. Morphokinetic parameters in chromosomal translocation carriers undergoing preimplantation genetic testing. Reproductive BioMedicine Online. 2019;38(2):177-183.  https://doi.org/10.1016/j.rbmo.2018.11.006
  40. Chen F, Xie X, Cai D, Yan P, Ding C, Wen Y, Xu Y, Gao F, Zhou C, Li G, Mai Q. Knowledge-embedded spatio-temporal analysis for euploidy embryos identification in couples with chromosomal rearrangements. Chinese Medical Journal. 2024;137(6):694-703.  https://doi.org/10.1097/CM9.0000000000002803
  41. Márquez-Hinojosa S, Noriega-Hoces L, Guzmán L. Time-Lapse Embryo culture: A better understanding of embryo development and clinical application. JBRA Assisted Reproduction. 2022;26(3):432-443.  https://doi.org/10.5935/1518-0557.20210107
  42. Kimelman D, Confino R, Okeigwe I, Lambe-Steinmiller J, Confino E, Shulman LP, Zhang JX, Pavone ME. Assessing the impact of delayed blastulation using time lapse morphokinetics and preimplantation genetic testing in an IVF patient population. Journal of Assisted Reproduction and Genetics. 2019;36(8):1561-1569. https://doi.org/10.1007/s10815-019-01501-1
  43. Yuan Z, Yuan M, Song X, Huang X, Yan W. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Scientific Reports. 2023;13(1):2322. https://doi.org/10.1038/s41598-023-29319-z
  44. Saraeva NV, Spiridonova NV, Tugushev MT, Shurygina OV, Sinitsyna AI, Korchagin AO. Optimization of a single embryo transfer in patients with good ovarian reserve. Vestnik RGMU. 2020;(2):46-52. (In Russ.). https://doi.org/10.24075/vrgmu.2020.021
  45. Cimadomo D, Soscia D, Casciani V, Innocenti F, Trio S, Chiappetta V, Albricci L, Maggiulli R, Erlich I, Ben-Meir A, Har-Vardi I, Vaiarelli A, Ubaldi FM, Rienzi L. How slow is too slow? A comprehensive portrait of Day 7 blastocysts and their clinical value standardized through artificial intelligence. Human Reproduction. 2022; 37(6):1134-1147. https://doi.org/10.1093/humrep/deac080
  46. Bayram A, De Munck N, Elkhatib I, Arnanz A, Liñán A, Lawrenz B, Fatemi HM. Cleavage stage mitochondrial DNA is correlated with preimplantation human embryo development and ploidy status. Journal of Assisted Reproduction and Genetics. 2019;36(9):1847-1854. https://doi.org/10.1007/s10815-019-01520-y
  47. Gazzo E, Peña F, Valdéz F, Chung A, Velit M, Ascenzo M, Escudero E. Blastocyst contractions are strongly related with aneuploidy, lower implantation rates, and slow-cleaving embryos: a time lapse study. JBRA Assisted Reproduction. 2020;24(1):77-81.  https://doi.org/10.5935/1518-0557.20190053
  48. Huang TT, Huang DH, Ahn HJ, Arnett C, Huang CT. Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reproductive BioMedicine Online. 2019;39(1):27-39.  https://doi.org/10.1016/j.rbmo.2019.01.010
  49. Cimadomo D, Marconetto A, Trio S, Chiappetta V, Innocenti F, Albricci L, Erlich I, Ben-Meir A, Har-Vardi I, Kantor B, Sakov A, Coticchio G, Borini A, Ubaldi FM, Rienzi L. Human blastocyst spontaneous collapse is associated with worse morphological quality and higher degeneration and aneuploidy rates: a comprehensive analysis standardized through artificial intelligence. Human Reproduction. 2022;37(10):2291-306.  https://doi.org/10.1093/humrep/deac175
  50. Wang J, Xiong S, Hao X, Gao Y, Xia F, Liao H, Zou J, Huang G, Han W. Evaluating the developmental potential of 2.1PN-derived embryos and associated chromosomal analysis. Journal of Assisted Reproduction and Genetics. 2024;41(6):1597-603.  https://doi.org/10.1007/s10815-024-03113-w

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.