The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Adamyan L.V.

Department of Reproductive Medicine and Surgery, Faculty of Postgraduate Professional Education, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia

Central regulatory mechanisms of female reproduction. Gonadotropin-inhibitory hormone: discovery, mechanism of action (a review)

Authors:

Adamyan L.V.

More about the authors

Journal: Russian Journal of Human Reproduction. 2018;24(1): 13‑20

Read: 4181 times


To cite this article:

Adamyan LV. Central regulatory mechanisms of female reproduction. Gonadotropin-inhibitory hormone: discovery, mechanism of action (a review). Russian Journal of Human Reproduction. 2018;24(1):13‑20. (In Russ.)
https://doi.org/10.17116/repro201824113-20

References:

  1. Bargmann W. The neurosecretory connection between the hypothalamys and the neurohypophysis. Z Zellforsch Mikrosk Anat. 1949;34(5):610-634.
  2. Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology. Front Endocrinol (Lausanne). 2015;23(6):179. https://doi.org/10.3389/fendo.2015.00179
  3. Harris GW. Neuronal control of the pituitary gland. Physiol Rev. 1948;28:139-179.
  4. Harris GW. The function of the pituitary stalk. Bull Johns Hopkins Hosp. 1955;97:358-375.
  5. Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. PNAS. 2006;103:2410-2415. https://doi.org/10.1073/pnas.0511003103
  6. Price DA, Greenberg MJ. Structure of a molluscan cardioexcitory neuropeptide. Science. 1977;197:670-671.
  7. Tsutsui K, Ukena K. Review: hypothalamic LPXRF-amide peptides in vertebrates: identification, localization and hypophysiotropic activity. Peptides. 2006;27:1121-1129. https://doi.org/10.1016/j.peptides.2005.06.036
  8. McCann SM, Ramirez VD. The neuroendocrine regulation of hypophysial luteinizing hormone secretion. Recent Prog Horm Res. 1964;20:131-181.
  9. Burgus R, Butcher M, Amoss M, Ling M, Mohannan M, Rivier J, Fellows R, Blackwell R, Vale W, Gullemin R. Primary structure of the ovine hypothalamic luteinizing-hormone releasing factor (LRF). Proc Natl Acad Sci USA. 1972;69:278-282.
  10. Matsuo H, Baba Y, Nair RM, Arimura A, Schally AV. Structure of porcrine LH- and FSH-releasing hormone. The proposed amino acid sequence. Biochem Biophys Res Commun. 1971;43:1334-1339.
  11. Moenter SM, Brand RM, Midqley AR, Karsch FJ. Dynamics of gonadotropin-releasing hormone release during a pulse. Endocrinology. 1992;130:503-510. https://doi.org/10.1210/endo.130.1.1727719
  12. Glanowska KM, Burger LL, Moenter SM. Development of gonadotropin-releasing hormone secretion and piyuitary response. J Neurosci. 2014;34(45):15060-15069. https://doi.org/10.1523/JNEUROSCI.2200-14.2014
  13. Knobil E. Patterns of hypophysiotropic signals and gonadotropin secretion in the Rhesus Monkey. Biol Reprod. 1981;24(1):44-49.
  14. Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol. 2015; 227:27-50. https://doi.org/10.1016/j.ygcen.2015.09.009
  15. Salehi MS, Tamadon A, Jafarzadeh Shirazi MR, Namavar MR, Zamiri MJ. The role of arginine-phenylalanine-amide-related peptides in mammalian reproduction. Int J Fertil Steril. 2015;9(3):268-276.
  16. Mittelman-Smith M, Williams H, Krajewski-Hall SJ, McMullen NT, Rance NE. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature. PNAS. 2012;109(48):19846-19851. https://doi.org/10.1073/pnas.1211517109
  17. Clarke IJ, Parkington HC. Gonadotropin inhibitory hormone (GnIH) as a regulator of gonadotropes. Molecular and Cellular Endocrinology. 2014;385:36-44. https://doi.org/10.1016/j.mce.2013.08.017
  18. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiological Reviews. 2012;92:1235-1316. https://doi.org/10.1152/physrev.00037.2010
  19. Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Res. 1997;15:57(12):2384-2387.
  20. Navarro VM. Interactions between kisspeptines and neurokinin B. Adv Exp Med Biol. 2013;784:325-347. https://doi.org/10.1152/ajpendo.00517.2010
  21. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. New England Journal of Medicine. 2008;358:709-715. https://doi.org/10.1056/NEJMoa073443
  22. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med. 2012;366(7):629-635. https://doi.org/10.1056/NEJMoa1111184
  23. Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda K. Kisspeptin and GnRH pulse generation. Advances in Experimental Medicine and Biology. 2013;784:297-323. https://doi.org/10.1007/978-1-4614-6199-9_14
  24. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18:298-303. https://doi.org/10.1111/j.1365-2826.2006.01417.x
  25. Terasawa E, Kurian JR, Keen KL, Shiel NA, Colman RJ, Capuano SV. Body weight impact on puberty: effects of high-calorie diet on puberty onset in female rhesus monkeys. Endocrinology. 2012; 153:1696-1705. https://doi.org/10.1210/en.2011-1970
  26. Castellano JM, Navarro VM, Fernández-Fernández R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005;146:3917-3925. https://doi.org/10.1210/en.2005-0337
  27. Stengel A, Wang L, Goebel-Stengel M, Taché Y. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011;22:253-257. https://doi.org/10.1097/WNR.0b013e32834558df
  28. Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. Brain Research. 2010;1364:129-138. https://doi.org/10.1016/j.brainres.2010.08.057
  29. Wahab F, Atika B, Shahab M. Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Metabolism: Clinical and Experimental. 2013;62:898-910. https://doi.org/10.1016/j.metabol.2013.01.015
  30. Akhter N, CarlLee T, Syed MM, Odle AK, Cozart MA, Haney AC, Allensworth-James ML, Beneš H, Childs GV. Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility. Endocrinology. 2014;155:4027-4042. https://doi.org/10.1210/en.2014-1132
  31. Guerriero KA, Keen KL, Terasawa E. Developmental increase in kisspeptin-54 release in vivo is independent of the pubertal increase in estradiol in female rhesus monkeys (Macaca mulatta). Endocrinology. 2012;153(4):1887-1897. https://doi.org/10.1210/en.2011-1701
  32. Smith JT, Young IR, Veldhuis JD, Clarke IJ. Gonadotropin-inhibitory hormone (GnIH) secretion into the ovine hypophyseal portal system. Endocrinology. 2012;153:3368-3375. https://doi.org/10.1210/en.2012-1088
  33. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein coupled receptor 54. PNAS. 2005;102:1761-1766. https://doi.org/10.1073/pnas.0409330102
  34. Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. Journal of Neuroscience. 2005;25: 11349-11356. https://doi.org/10.1523/JNEUROSCI.3328-05.2005
  35. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006;147:5817-5825. https://doi.org/10.1210/en.2006-0787
  36. Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactive neurons in the equine hypothalamus Interactions with GnRH neuronal system. Journal of Chemical Neuroanatomy. 2008;36:131-137. https://doi.org/10.1016/j.jchemneu.2008.07.008
  37. Dumalska I, Wu M, Morozova E, Liu R, van den Pol A, Alreja M. Excitatory effects of the puberty-initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin-releasing hormone neurons. Journal of Neuroscience. 2008;28:8003-8013. https://doi.org/10.1523/JNEUROSCI.1225-08.2008
  38. Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology. 2008;149:1979-1986. https://doi.org/10.1210/en.2007-1365
  39. Di Giorgio NP, Catalano PN, López PV, González B, Semaan SJ, López GC, Kauffman AS, Rulli SB, Somoza GM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABA-B receptors alters Kiss1, Gnrh1 and Gad1 mRNA expression in the medial basal hypothalamus at postnatal day 4. Neuroendocrinology. 2013;98:212-223. https://doi.org/10.1159/000355631
  40. Franceschini I, Desroziers E. Development and aging of the kisspeptin-GPR54 system in the mammalian brain: what are the impacts on female reproductive function? Front Endocrinol (Lausanne). 2013;28(4):22. https://doi.org/10.3389/fendo.2013.00022
  41. Shahab M, et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. PNAS. 2005;102:2129-2134. https://doi.org/10.1073/pnas.0409822102
  42. Tsitsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;28;275(2):661-667. https://doi.org/10.1006/bbrc.2000.3350
  43. Tsitsui K, Ubuka T, Bentley GE, Kriegsfeld LJ. Gonadotropin-inhibitory hormone: discovery, progress and prospect. Gen Comp Endocrinol. 2012;177 (3):305-314. https://doi.org/10.1016/j.ygcen.2012.02.013
  44. Leon S, Tena-Sempere M. Dissecting the roles of gonadotropin-inhibitory hormone in mammals: studies using pharmacological tools and genetically modified mouse models. Front Endocrinol (Lausanne). 2016;6:189. https://doi.org/10.3389/fendo.2015.00189
  45. Ubuka T, Son YL, Tobari Y, Tsutsui K. Gonadotropin-inhibitory hormone action in the brain and pituitary. Front Endocrinol (Lausanne). 2012;28(3):148. https://doi.org/10.3389/fendo.2012.00148
  46. Osugi T, Ukena K, Bentley GE, O’Brien S, Moore IT, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone in Gambel’s white-crowned sparrow: cDNA identification, transcript localization and functional effects in laboratory and fiel experiments. J Endocrinol. 2004;183:33-42.
  47. Tsutsui K, Ubuka T, Bentley GE, Kriegsfeld LJ. Review: regulatory mechanisms of GnIH synthesis and release in photoperiodic animals. Frontiers in Neurosciense. 2013;7:1-11. https://doi.org/10.3389/fnins.2013.0006
  48. Tsutsui K. Review: a new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog Neurobiol. 2009;88:76-88. https://doi.org/10.1016/j.pneurobio.2009.02.003
  49. Johnson MA, Tsutsui K, Fraley GS. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav. 2007;51:171-180. https://doi.org/10.1016/j.yhbeh.2006.09.009
  50. Maddieni S, Ocón-Grove OM, Krzysik-Walker SM, Hendricks GL3rd, Proudman JA, Ramachandran R. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids. J Neuroendocrinol. 2008;20:1078-1088. https://doi.org/10.1111/j.1365-2826.2008.01765
  51. Shimizu M, Bédécarrats GY. Activation of the chicken gonadotropin-inhibitory hormone receptor reduces gonadotropin releasing hormone receptor signaling. Gen Comp Endocrinol. 2010;167:331-337. https://doi.org/10.1016/j.ygcen.2010.03.029
  52. McGuire NE, Bentley GE. A functional neuropeptide system in vertebral gonads: gonadotropin-inhibitory hormone and its receptor in testes of field-caught house sparrow (Passer domesticus). Gen Comp Endocrinol. 2010;166:565-572. https://doi.org/10.1016/j.ygcen.2010.01.010
  53. Oishi H, Klausen C, Bentley GE, Osugi T, Tsutsui K, Gilks CB, Yano T, Leung PC. The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells. Endocrinology. 2012;153:3435-3445. https://doi.org/10.1210/en.2012-1066
  54. Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol. 2001;22(4):292-308. https://doi.org/10.1006/frne.2001.0219
  55. Poling MC, Kim J, Dhamija S, Kauffman AS. Development, sex steroid regulation, and phenotypic characterization of RFamide-related peptide (Rfrp) gene expression and RF-amide receptors in the mouse hypothalamus. Endocrinology. 2012;153:1827-1840. https://doi.org/10.1210/en.2011-2049
  56. Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol. 2008;199:105-112. https://doi.org/10.1677/JOE-08-0197
  57. Rizwan MZ, Porteous R, Herbison AE, Anderson GM. Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology. 2009;150:1413-1420. https://doi.org/10.1210/en.2008-1287
  58. Kadokawa H, Shibata M, Tanaka Y, Kojima T, Matsumoto K, Oshima K, Yamamoto N. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest Anim Endocrinol. 2009;36(4):219-224. https://doi.org/10.1016/j.domaniend.2009.02.001
  59. Kriegsfeld LJ, Ubuka T, Bentley GE, Tsutsui K. Seasonal control of Gonadotropin-Inhibitory Hormone (GnIH) in birds and mammals. Front Neuroendocrinol. 2015;37:65-75. https://doi.org/10.1016/j.yfrne.2014.12.001
  60. Son YL, Ubuka T, Millar RP, Kanasaki H, Tsutsui K. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology. 2012;153:2332-2343. https://doi.org/10.1210/en.2011-1904

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.