Сахарный диабет (СД) в раннем детском возрасте остается значимой медико-социальной и экономической проблемой, что обусловлено лабильным течением и трудностью компенсации заболевания, а также высоким риском тяжелых инвалидизирующих осложнений к моменту достижения пациентом трудоспособного возраста.
Достижения молекулярно-генетического анализа на современном этапе позволили по-новому взглянуть на причины развития СД у пациентов первых 6 мес жизни. Помимо традиционного для детской практики аутоиммунного поражения поджелудочной железы с последующим развитием абсолютной инсулиновой недостаточности, возникновение СД у детей данной возрастной группы может быть также связано с врожденной генетической патологией. Среди этих причин могут быть выделены дефекты, обусловливающие функциональные нарушения β-клеток (гены KCNJ11 [1], ABCC8 [2], GCK [3]); вызывающие агенезию (гипоплазию) поджелудочной железы (гены IPF [4], GLIS3 [5, 6], HNF1B [7], PTFA1 [8, 9]); а также приводящие к деструкции β-клеток в результате их преждевременного апоптоза (гены INS [10], EIF2AK3 [11], FOXP3 [12]).
Понимание молекулярно-генетических основ возникновения СД в младенческом возрасте является ключом к ранней диагностике заболевания и назначению патогенетически обоснованного лечения. В этой связи особенный интерес вызывают функциональные дефекты β-клеток поджелудочной железы, ассоциированные с активирующими мутациями в генах KCNJ11 и ABCC8, кодирующих Kir6.2- и SUR1-субъединицы АТФ-зависимых каналов соответственно. Механизм развития неонатального сахарного диабета (НСД) вследствие уменьшения чувствительности Kir6.2-субъединицы к ингибирующему влиянию АТФ в результате активирующих миссенс-мутаций в гене KCNJ11 был впервые описан A. Gloуn и соавт. [1] в 2004 г. В настоящее время мутации в данном гене считаются самой частой причиной развития перманентного СД у детей первых 6 мес жизни [13, 14]. В 2006 г. A. Babenko и соавт. [2] описали еще один механизм возникновения НСД вследствие повышения активности SUR1-субъединицы в результате мутаций в гене АВСС8.
Уникальная способность производных сульфонилмочевины связываться с SUR1-cубъединицей калиевых каналов, вызывая увеличение секреции инсулина, в течение многих лет используется для лечения СД 2-го типа [15]. Этот же механизм может быть использован и при НСД, обусловленный дефектами генов KCNJ11 и АВСС8 [1, 2, 16, 17]. Назначение таким пациентам препаратов сульфонилмочевины на фоне полной отмены инсулинотерапии позволяет добиться стойкой компенсации углеводного обмена, улучшения со стороны неврологического компонента заболевания, уменьшения риска возникновения сосудистых осложнений при снижении инвазивности и стоимости лечения, что значительно улучшает качество жизни больных.
В отечественной литературе [18—20] на данный момент описаны 3 случая с активирующими мутациями в гене KCNJ11, тогда как описания больных с НСД, обусловленным мутациями гена АВСС8, пока отсутствуют. В данной работе приводится описание 9 больных с дефектами АТФ-зависимых K-каналов, в том числе впервые в отечественной практике представлены наблюдения 2 случаев СД, ассоциированных с дефектами гена ABCC8.
Материал и методы
В исследование включены 14 пациентов с манифестацией СД в течение первых 6 мес жизни. Средний возраст пациентов на момент проведения молекулярно-генетического анализа составил 6,26 года (0,25—25 лет); средний возраст манифестации СД — 50-й день жизни (5—150 дней). Соотношение лиц мужского и женского пола составило 1,25:1.
Молекулярно-генетические исследования. Геномную ДНК выделяли из периферических лейкоцитов с использованием стандартных методов. С помощью ПЦР амплифицировали фрагменты геномной ДНК, охватывающие кодирующую последовательность гена KCNJ11 и экзоны 1—39, с примыкающими участками интронов гена ABCC8. После электрофореза в 1% агарозном геле продукты ПЦР выделяли и очищали с использованием набора Wizard PCR Preps DNA Purification System, и затем секвенировали на автоматическом секвенаторе Genetic Analyzer Model 3130 («Applied Biosystems»).
Для ПЦР и секвенирования использовались следующие олигонуклеотиды. KCNJ11: F, 5’-CACCGAGAGGACTCTGCAGTGA-3’; R, 5’-GCCCTGGCCGGGCTACATAC-3’. ABCC8: E1F, 5’-GAGCACGCGCCTCCACATCTG-3’; E2R, 5’-GACACTGAGCTGCTGGATGTAG-3’; E3F, 5’-CCCAGCTCTACTCCATGTAC-3’; E3R, 5’-CCATCATCCTGTTGCTTCTG-3’; E4F, 5’-CACACGTGCACATCCACTTACTC-3’; E5F, 5’-CCCCATCTGTTAGAGATC-3’; E5R, 5’-CCAGAAGGCAGTGAATAGATG-3’; E6R, 5’-GCCATGGCTCACACACATTGG-3’; E7F, 5’-GGAAAGATGAACAGGGTGTAAG-3’; E7R, 5’-TCTTGAGTGTCCATGAGGATG-3’; E8F, 5’-GTTGGAACGGTGATACAGTAC-3’; E8R, 5’-CCAAGTGTGTGAAAGGTACAG-3’; E9F, 5’-CCTGGGCACCAAGGCTTGTC-3’; E10R, 5’-CTCAAGGCCTCCTGCTTCTG-3’; E11F, 5’-GCCACAGGGCTAGAGTTCTG-3’; E12R, 5’-GGACCAAACAGCTGTGGTTTG-3’; E13F, 5’-GCTTTGTGGGACTATACTTCAG-3’; E15R, 5’-CAAGAATGAGCAGAGAGTAG-3’; E16R, 5’-TATTGAGTCCTCACTGAACAC-3’; E17F, 5’-CCACAGAGGCCATTTGGAAAC-3’; E18F, 5’-GCAGCATTTGTGGCTACAG-3’; E19R, 5’-AGAGGCTGGAGTGCAGGTAAG-3’; E20F, 5’-GGAGGCCTATTAAAGCCATTG-3’; E21R, 5’-CCTCAGTTTCCCTATCACTAG-3’; E22F, 5’-CAGAGTTGATAGAACTCTAATGG-3’; E22R, 5’-ATCCAGTGCTGGTCTCTTATG-3’; E23F, 5’-GCTGGTGGCCATTTGTAGTG-3’; E23R, 5’-TCATGCCCAGCTCCCACATC-3’; E24F, 5’-TGGTCATCACCAGAGTAGTTAC-3’; E25F, 5’-CCTGATTCACCCTCAGAG-3’; E27R, 5’-GGCTGTGATCACCTGATCTG-3’; E28F, 5’-GCAAAACATGGCGGCCAGTAG-3’; E29R, 5’-GTCCTTGGCCTTCCCAAGTG-3’; E30F, 5’-GAGGGATAGCTTACATGAAGTG-3’; E31F, 5’-GTGACGTGTGCATGAGTTG-3’; E33R, 5’-GACTGCGATGTCTGAATAGTG-3’; E34F, 5’-ACACACCCAGAGCTAGCATAG-3’; E36R, 5’-ACCTGAGACACGGGCTTCTG-3’; E37F, 5’-CTGCACACGCCTGTGCTCTTG-3’; E38R, 5’-GCCCTGAACTGCCTGCTTC-3’; E39R, 5’-CACCAGACTTAGGGCCTCTAG-3’.
В качестве референсных последовательностей кДНК KCNJ11 и ABCC8 использовались ссылки Genbank [http://www.ncbi.nlm.nih.gov/sites/entrez] под номерами NM_000525 и NM_000352 соответственно. Обозначение мутаций проводили в соответствии с рекомендациями J. den Dunnen и S. Antonarakis [21].
Результаты исследования
У 7 (50%) из 14 пациентов, страдающих НСД, были обнаружены гетерозиготные миссенс-мутации в гене KCNJ11 (R201H — у 3 пациентов, R201C, С42R, L164P, V59M). В 2 (14,2%) случаях нами были выявлены гетерозиготные миссенс-мутации в экзоне 5 гена АВСС8 (D209E и D212G), в том числе ранее неописанная мутация D212G. В остальных случаях (5 пациентов, 35,7%) дефекты в генах KCNJ11 и АВСС8 обнаружены не были.
Большинство выявленных мутаций в генах KCNJ11 и АВСС8 возникли de novo, тогда как в 1 случае заболевание имело семейный характер (отец и дочь с мутацией R201H в гене KCNJ11). Сопутствующие неврологические расстройства (DEND-синдром) выявлены у 1 пациентки с мутацией V59M в гене KCNJ11.
Клиническая характеристика пациентов представлена в таблице.
До генетической верификации диагноза все пациенты получали инсулинотерапию по интенсифицированной схеме в средней суточной дозе 1,15 Ед/кг (0,5—2,0 Ед/кг). После генетической верификации диагноза 6 (42,9%) пациентов (4 — с мутациями в гене KCNJ11 и 2 — с мутациями в гене АВСС8) были полностью переведены с инсулинотерапии на лечение производным сульфонилмочевины 2-го поколения (глибенкламид) в средней суточной дозе 0,54 мг/кг (0,1—1,4 мг/кг). Нежелательные побочные явления, связанные с приемом препарата, ни у одного из пациентов не зарегистрированы.
Приведем описание клинических случаев НСД, ассоциированных с активирующими мутациями в гене АВСС8.
Клинический случай №1. Мальчик П.Т., от здоровых родителей, физиологической доношенной беременности. Наследственность по эндокринной патологии не отягощена. Масса тела ребенка при рождении составила 3360 г (SDS — 0,48), рост 52 см (SDS 0,7). С момента рождения у ребенка в выдыхаемом воздухе периодически отмечался запах ацетона, с 1 мес появилась гиперемия в паховой и перианальной областях, торпидная к лечению. В 2 мес при диспансерном обследовании по месту жительства выявлены глюкозурия, кетонурия, в связи с чем мальчик был госпитализирован в эндокринологическое отделение МДГКБ.
При поступлении состояние ребенка было оценено как среднетяжелое, однако самочувствие не страдало. Выявлены повышение уровня гликемии до 27,8 ммоль/л, умеренный кетоз (кетоны крови 1,7 ммоль/л); pН крови 7,42; ВЕ 2,3 ммоль/л. При осмотре обращало на себя внимание наличие умеренной сухости кожных покровов с умеренной гиперемией и единичными папулезными высыпаниями в области наружных половых органов, некоторое снижение тургора тканей. Масса тела ребенка при поступлении составила 4900 г (SDS –1,28), рост 59 см (SDS 0,18) ИМТ 14,08 кг/м2 (SDS –1,28). По внутренним органам и системам патологии не было выявлено. Нервно-психическое развитие соответствовало возрасту. При лабораторном обследовании отмечалось снижение уровня С-пептида до 0,478 нг/мл (норма 1,1—4,4); инсулина до 1,25 мкЕд/мл (норма 2,6—24,9), повышение уровня HbA1c до 12% (норма до 6%). Аутоантитела к островковым клеткам не определялись, в то время как уровень антител к глутаматдекарбоксилазе (GAD) был повышен до 7,3 Ед/л (норма 0—1).
Субкомпенсация заболевания была достигнута на фоне инсулинотерапии препаратами актрапид, протафан по интенсифицированной схеме в средней суточной дозе 2,0 Ед/кг. Однако в дальнейшем, несмотря на высокую комплаентность родителей, отмечались колебания уровня гликемии от 3,1 до 23,5 ммоль/л.
Был проведен молекулярно-генетический анализ генов KCNJ11 и АВСС8. В гене KCNJ11 мутаций не выявлено. В гене АВСС8 была обнаружена гетерозиготная миссенс-мутация в экзоне 5: трансверсия C на A в позиции 627, приводящая к замене кодона аспарагиновой кислоты (GAC) на кодон глутаминовой кислоты (GАA) в положении 209 (c.627C>A p.D209E) (см. рис. 1, а на цв. вклейке).
Результаты молекулярно-генетического анализа позволили отменить инсулинотерапию и перевести пациента на лечение производным сульфонилмочевины (глибенкламид 1,75 мг) в суточной дозе 0,3 мг/кг. Коррекция лечения привела к существенному улучшению метаболического контроля над заболеванием. Через 1 мес после назначения глибенкламида среднесуточные колебания гликемии составили 5—8 ммоль/л, а уровень HbA1c снизился до 7,1% (норма до 6,0%). Через 6 мес после коррекции лечения на фоне терапии глибенкламидом в средней суточной дозе 0,1 мг/кг отмечалось увеличение уровня С-пептида до 3,78 нг/мл (норма 1,1—4,4), ИРИ составил 31,51 мкЕд/мл (норма 2,6—24,9), HbA1c — 6,0% (норма до 6,0%).
Клинический случай №2. Девочка Б.С., от здоровых родителей, физиологической беременности, срочных нормальных родов. Рост при рождении 51 см (SDS 0,62), масса тела 3200 г (SDS –0,58). В возрасте 1,5 мес при диспансерном обследовании выявлена глюкозурия. При поступлении в эндокринологическое отделение самочувствие пациентки не страдало, масса тела составила 4500 г (SDS +0,2), аппетит был сохранен. При осмотре обращало на себя внимание наличие грибкового дерматита в области ягодиц, тургор тканей был сохранен, по внутренним органам и системам патологии не выявлено. Нервно-психическое развитие соответствовало возрасту. По данным лабораторного обследования, уровень гликемии при поступлении составил 18,8 ммоль/л, рН крови 7,47, кетоза не было. HbA1c 8,3% (норма до 6,0%). Антитела к инсулину β-клеткам поджелудочной железы и GAD не выявлены. С-пептид 0,852 нг/мл (норма 1,1—4,4).
Была начата инсулинотерапия (новорапид, протафан) по интенсифицированной схеме в средней суточной дозе 1,5 Ед/кг. На фоне лечения показатели гликемии улучшились, девочка была выписана домой в состоянии субкомпенсации при среднесуточных показателях гликемии 12,2 ммоль/л. В домашних условиях на фоне инсулинотерапии сохранялись колебания гликемии от 3,1 до 13,0 ммоль/л, периодически отмечались эпизоды повышения сахара крови до 22,0 ммоль/л.
Был проведен молекулярно-генетический анализ генов KCNJ11 и АВСС8. В гене KCNJ11 мутаций не выявлено. В гене АВСС8 была обнаружена гетерозиготная миссенс-мутация в экзоне 5: транзиция A на G в позиции 635, приводящая к замене кодона аспарагиновой кислоты (GAC) на кодон глицина (GGC) в положении 212 (c.635A>G p.D212G) (см. рис. 1, б на цв. вклейке). У родителей ребенка мутация не выявлена, что свидетельствовало в пользу ее возникновения de novo. Данная мутация ранее не была описана.
Результаты анализа гена АВСС8 послужили основанием для отмены инсулинотерапии и назначения перорального производного сульфонилмочевины (глибенкламид) в средней суточной дозе 0,84 мг/кг перед кормлением в 8:00, 16:00, 22:00 ч. На фоне коррекции терапии отмечалось стойкое улучшение гликемического профиля со снижением уровня HbA1c до 6,1% (норма до 6,0%). В возрасте 6 мес в связи с повторяющимися гипогликемическими состояниями глибенкламид был полностью отменен. При контрольном обследовании в 8 мес уровень НbА1с составил 5,6%.
АТФ-чувствительные калиевые каналы присутствуют на плазматических мембранах панкреатических β-клеток, клеток гладкой и скелетной мускулатуры, нейронов и миокардиоцитов, и состоят из 4 субъединиц рецептора сульфонилмочевины (SUR1) и 4 субъединиц специфического порообразующего белка Kir6.2 в октаметрической конфигурации [22]. SUR1 относится к семейству АТФ-связывающих кассетных белков (АВС-белки) и содержит 17 трансмембранных спиралей, организованных в 3 трансмембранных домена TMD0, TMD1 и TMD2 [23—26]. Трансмембранный домен TMD0 непосредственно взаимодействует с Kir6.2-субъединицей, регулируя открытие и закрытие поры. Цитоплазматическая часть трансмембранных доменов TMD1 и TMD2 содержит 2 нуклеотидсвязывающих участка NBD1 и NBD2, регулирующих активность K-каналов путем взаимодействия с цитозольными нуклеотидами Mg2+AДФ/ATФ [23—26].
Клонированы 2 изоформы рецептора сульфонилмочевины SUR1 и SUR2. SUR1 — высокоаффинный рецептор, распространен преимущественно в панкреатических β-клетках и нейронах, SUR2 — низкоаффинный рецептор, существует в нескольких вариантах, наиболее часто встречающиеся — SUR2А, расположенный в клетках сердца и скелетной мускулатуры, и SUR2В — в клетках гладкой мускулатуры и в нейронах. Неоднородность строения K-каналов обусловливает различие в их взаимодействии с производными сульфонилмочевины [27]. В частности, J. Koster и соавт. [28] полагают, что улучшение неврологической симптоматики у пациентов с DEND-синдромом обусловлено высоким сродством SUR1-субъединицы к блокирующему действию глибенкламида, в то время как отсутствие динамики со стороны скелетной мускулатуры обусловлено наличием в данных клетках Kir6.2/SUR2А-калиевых каналов.
Ген АВСС8, кодирующий SUR1-субъединицу, картирован на хромосоме 11p15.1 и состоит из 39 экзонов, кодирующих 1582 а.о. Общая протяженность гена составляет более 100 кб [29].
Рецептор сульфонилмочевины выполняет регуляторную функцию по отношению к субъединице Kir6.2 K-каналов, которая формирует в клеточной мембране пору для селективного переноса ионов калия, вызывая изменение электрического потенциала клеточной мембраны, что в свою очередь является триггером для активации вольтажзависимых кальциевых каналов, необходимых как для процессов мышечного сокращения, так и для высвобождения гормонов (в частности, инсулина) и нейротрансмиттеров.
По мере снижения уровня гликемии происходит обратное изменение соотношения цитозольных нуклеотидов, что вызывает активацию SUR1, открытие K-каналов, гиперполяризацию клеточной мембраны и подавление секреции инсулина.
Активирующие мутации в гене АВСС8 вызывают увеличение активности SUR1-субъединицы K-каналов при физиологических концентрациях нуклеотида магния, что приводит к нарушению баланса между процессами открытия и закрытия каналов и нарушению секреции инсулина [2]. Однако при этом сохраняется чувствительность измененных вследствие мутации каналов к препаратам сульфонилмочевины, что позволяет их использовать для компенсации СД у таких пациентов.
В настоящее время у пациентов с НСД описаны около 40 мутаций в гене АВСС8 и около 50 мутаций в гене KCNJ11. Большинство данных мутаций относятся к миссенс-мутациям, в единичных случаях встречаются мутации со сдвигом рамки считывания (T1043QfsX74 в гене ABCC8) [30]. В отличие от преимущественно гетерозиготных мутаций в гене KCNJ11, мутации в гене АВСС8 могут быть гетерозиготными, гомозиготными или компаунд-гетерозиготными [31]. В последнем случае мутантный ген может содержать как активирующий, так и инактивирующий аллель.
По разным данным [13, 30, 32], на долю активирующих мутаций в гене АВСС8 приходится от 13 до 27% всех случаев НСД. Мутации в гене АВСС8 могут иметь различную локализацию, но несколько чаще выявляются в участках, соответствующих первой цитоплазматической петле между двумя первыми трансмембранными доменами [33]. Выявленные у наших больных две мутации D209E и D212G расположены в этом же домене белка SUR1 (см. рис. 2 на цв. вклейке).
Достоверных клинических критериев, позволяющих без проведения молекулярно-генетического анализа дифференцировать формы СД у детей первых 6 мес жизни, не существует. Перманентное и транзиторное течение заболевания характерно как для мутаций в гене KCNJ11, так и для мутаций в гене АВСС8, причем если мутации в гене KCNJ11 являются основной причиной развития перманентного НСД, то для мутаций в гене АВСС8 более характерно транзиторное течение заболевания. Пациенты с мутациями в гене KCNJ11 чаще манифестируют кетоацидозом, в то время как для мутаций в гене АВСС8 характерно малосимптомное начало заболевания с умеренным кетозом и выраженной гипергликемией. В некоторых случаях, в том числе и у наших пациентов, диагноз устанавливается во время диспансерного обследования ребенка. В отличие от активирующих мутаций в гене KCNJ11, в 25% случаев, сопровождающихся эпилепсией и выраженной задержкой психомоторного развития (DEND-синдром), есть только единственное описание такой тяжелой сопутствующей неврологической патологии у пациента с дефектом гена АВСС8 [34].
В нашем случае у обоих пациентов с мутациями D209E и D212G в гене АВСС8 заболевание было выявлено при диспансерном обследовании, тогда как характерные клинические признаки манифестации СД (полидипсия, потеря массы тела, вялость, снижение аппетита), несмотря на высокий уровень гликемии, отсутствовали. Антитела, ассоциированные с СД 1-го типа (ICA, IAA, GAD), отсутствовали у пациентки с мутацией D212G, в то время как у пациента с мутацией D209E отмечалось повышение титра антител к GAD до 7 Ед/л (норма 0-1) [32]. Аномалии развития поджелудочной железы, по данным УЗИ органов брюшной полости, а также сопутствующие неврологические расстройства отсутствовали в обоих случаях. У пациентки с мутацией D212G, как было установлено при дальнейшем наблюдении, течение НСД имело транзиторный характер, и с 6-месячного возраста сахарснижающая терапия была полностью отменена. У пациента с мутацией D209E до настоящего времени отмечается перманентное течение заболевания, хотя, по данным литературы, данная мутация может быть ассоциирована как с перманентным, так и с транзиторным течением НСД. После получения результатов молекулярно-генетического исследования оба пациента были успешно переведены на пероральные сахарснижающие препараты. В качестве перорального сахарснижающего препарата было выбрано производное сульфонилмочевины 2-го поколения глибенкламид в средней стартовой дозе 0,57 мг/кг в сутки (0,3—0,84 мг/кг), а поддерживающая доза препарата у обоих пациентов составила 0,2—0,3 мг/кг в сутки. В литературе [13, 16, 32] имеются сообщения об использовании дозы до 1,4 мг/кг в сутки.
Таким образом, нами обобщены данные, полученные при наблюдении 9 больных с НСД, обусловленным дефектами АТФ-зависимых K-каналов, при этом активирующие мутации в гене АВСС8 в отечественной практике описаны впервые.
Полученные данные свидетельствуют о необходимости проведения молекулярно-генетического анализа всем детям с НСД, независимо от стажа заболевания, для проведения дифференциальной диагностики между аутоиммунной и моногенной формами СД, что может позволить прогнозировать течение заболевания, проводить коррекцию сахарснижающей терапии со значительным улучшением метаболического контроля при снижении инвазивности и стоимости лечения.