Тяжелые врожденные нарушения кальций-фосфорного обмена у детей встречаются достаточно редко, и их диагностика в раннем детском возрасте, как правило, осложнена не только неспецифичностью и тяжестью симптомов, но и недостаточной информированностью врачей об этой проблеме.
Основными регуляторами метаболизма кальция в организме человека являются паратгормон (ПТГ), кальцитриол и кальцитонин. Для обмена кальция также важно состояние кальцийсенсорного рецептора.
Кальцийсенсорный рецептор человека — поверхностный клеточный белок, состоящий из 1078 аминокислот и относящийся к суперсемейству рецепторов, ассоциированных с белком G. Характерной особенностью таких рецепторов является наличие одиночной полипептидной цепи, 7 раз пронизывающей клеточную мембрану. Кальцийсенсорный рецептор содержит 3 функционально значимых домена. Самый крупный из них внеклеточный лигандсвязывающий домен состоит из 612 аминокислот; трансмембранный домен 7 раз пронизывает мембрану, образуя 3 экстрацеллюлярные и 3 цитоплазматические петли; и внутриклеточный участок состоит из 216 аминокислот [1]. Присоединение лиганда к внеклеточной части рецептора инициирует трансмембранную передачу сигнала с последующей активацией одного из белков G, ассоциированных с внутриклеточным фрагментом рецептора. Переход белка G в активное состояние запускает каскад внутриклеточных реакций, модулирующих функцию клетки. Кальцийсенсорный рецептор экспрессируется в околощитовидных железах и почках, где он играет ключевую роль в поддержании гомеостаза кальция благодаря тому, что регулирует высвобождение ПТГ, а также реабсорбцию кальция в почечных канальцах. Регуляция почечного транспорта осуществляется как напрямую, вызывая задержку воды и кальция, так и опосредованно, влияя на секрецию ПТГ [2].
В норме высокая концентрация кальция активирует кальцийсенсорный рецептор на поверхности клеток околощитовидной железы, что приводит к торможению секреции ПТГ, а также в почках, в результате чего повышается экскреция кальция [3]. При снижении функции кальцийсенсорного рецептора секреция ПТГ расторможена, а выделение кальция с мочой снижается.
Биаллельные инактивирующие дефекты гена CASR, кодирующего кальцийсенсорный рецептор, ассоциированы с тяжелым неонатальным гиперпаратиреозом — редким заболеванием, наследуемым по аутосомно-рецессивному типу. В настоящей публикации впервые в отечественной практике мы представляем описание случая данного заболевания.
У мальчика, родившегося от молодых здоровых родителей в срок, с массой 3420 г и длиной 53 см, 7/8 баллов по Апгар, находившегося на свободном естественном вскармливании, с 8-го дня жизни было отмечено отсутствие самостоятельного стула; после очистительной клизмы стул был плотный, желтый, небольшого объема. С 14-го дня ухудшился аппетит, ребенок стал терять в массе, появилась вялость, но рвоты и срыгиваний не было. В связи с выраженной потерей массы, которая к возрасту 3 нед уменьшилась до 2780 г, ребенок был госпитализирован. При поступлении в стационар отмечены такие неспецифические симптомы, как бледность и мраморность кожных покровов, резкая истонченность подкожно-жировой клетчатки, приглушенность тонов сердца, брадикардия 80—90 уд/мин, вздутие живота — пальпируются петли кишечника, заполненные каловыми массами, незначительное западание большого родничка, выраженная мышечная гипотония и гипорефлексия. Большой родничок размерами 2×2,5 см, малый — диаметром 0,5 см, сагиттальный и фронтальный швы, разошедшиеся на 0,3—0,5 см.
В общих клинических анализах крови и мочи отклонений от нормы не выявлено, однако в биохимическом анализе крови обнаружено резкое повышение уровней общего и ионизированного кальция до 5,13 и 4,1 ммоль/л соответственно (в норме 2,15—2,55 и 1,03 — 1,29 ммоль/л), снижение уровня фосфора до 0,43 ммоль/л (в норме 0,81—1,45 ммоль/л), уровень щелочной фосфатазы составил 693 ед/л (табл. 1).
Таким образом, была выявлена тяжелая гиперкальциемия, и следующим этапом диагностики стал поиск причины развития столь выраженных метаболических нарушений. Обследование ребенка включало биохимические и гормональные исследования крови и мочи на всех этапах диагностики и лечения, рентгенографию длинных трубчатых костей, ультразвуковое исследование (УЗИ) околощитовидных желез и почек, а также молекулярно-генетическое исследование гена кальцийсенсорного рецептора (CASR).
Геномную ДНК выделяли из периферических лейкоцитов с использованием стандартных методов. С помощью полимеразной цепной реакции (ПЦР) амплифицировали фрагменты геномной ДНК, охватывающие кодирующую последовательность гена CASR с примыкающими участками интронов. После электрофореза в 1% агарозном геле продукты ПЦР выделяли и очищали с использованием набора Wizard PCR Preps DNA Purificaion System, а затем секвенировали на автоматическом секвенаторе Genetic Analyzer Model 3130 (Applied Biosystems, Hitachi).
Для ПЦР и секвенирования использовали следующие олигонуклеотиды:
CASR_E2F: 5’-CCCCACTGCAGGGAGTGAACTG-3’;
CASR_E2R: 5’-GCAACACTGCTGCCAGGTGAAC-3’;
CASR_E3F: 5’-CTCTAAAGTCGTTGACTAGAAAG-3’;
CASR_E3R: 5’-GGGAATATGGTAAACCGTATGG-3’;
CASR_E4F: 5’-GAGACCAAGGCATGCTCAGAAAG-3’;
CASR_E4R1: 5’-GGTGTCCACAGGTAAAGG-3’;
CASR_E4R2: 5’-CTTCCTCATCAGAGTACTG-3’;
CASR_E4R: 5’-GGTACTTTGAATCCAAAGCTCCAT-3’;
CASR_E5F: 5’-GGGCTTGTACTCATTCTTTG-3’;
CASR_E5R: 5’-GCAAAGGCCAGAGAGTTCAG-3’;
CASR_E6F: 5’-CCAACGTCTGTCACACTGATTC-3’;
CASR_E7R2: 5’-CTCCTGGTTGCGGTAGCTTGA-3’;
CASR_E7R1: 5’-GGTCTTCGCTGTTGCTCTTG-3’;
CASR_E7R: 5’-CCCAAGAAACCTCTCTGCATTC-3’.
В качестве референсной последовательности гена CASR использовали ссылку Genbank (http://www.ncbi.nlm.nih.gov/sites/entrez) под номером U20759. Обозначение мутаций проводили в соответствии с рекомендациями den Dunnen и Antonarakis [4].
Результаты обследования и лечения
При рентгенографии патологических изменений длинных трубчатых костей, характерных для повышенной резорбции, таких как истончение и значительное снижение плотности кортикального слоя и субпериостальная резорбция [5], выявлено не было.
Для уточнения причины такой выраженной гиперкальциемии был исследован ПТГ, уровень которого превысил верхнюю границу нормы более чем в 20 раз и составил 1387 пг/мл (при норме 15—65 пг/мл). Однако при УЗИ в местах типичного расположения околощитовидных желез патологических образований выявлено не было.
Учитывая выраженное повышение уровня кальция и ПТГ в крови, предположили тяжелый неонатальный гиперпаратиреоз вследствие потери функции кальцийсенсорного рецептора [6].
Несмотря на терапию, проводившуюся в стационаре и включавшую внутримышечное введение гидрокортизона в суточной дозе 8—15 мг/кг, массивную инфузионную терапию с введением лазикса 1—5 мг/кг/сут, уровень концентрации ионизированного и общего кальция снизился лишь до 2,11 и 3,64 ммоль/л соответственно, концентрация фосфора приблизилась к норме — 0,8 ммоль/л, уровень щелочной фосфатазы снизился до 492 ед/л (см. табл. 1). В связи с этим было принято решение об удалении околощитовидных желез.
При повторном УЗИ в хирургическом стационаре щитовидная железа не увеличена, околощитовидные железы не визуализируются, но в отличие от предыдущего обследования в паренхиме почек выявлены уплотнения (кальцинаты). В биохимическом анализе крови уровень общего кальция 3,99 ммоль/л, фосфора — 0,98 ммоль/л, щелочной фосфатазы — 588 ед/л; уровень ПТГ более 1000 пг/мл (см. табл. 1). В возрасте 1 мес 11 дней ребенку была выполнена тотальная паратиреоидэктомия с аутотрансплантацией одной из околощитовидных желез в четырехглавую мышцу бедра. Послеоперационный период протекал гладко, на следующие сутки уровень ПТГ снизился до 200 пг/мл, общего кальция — до 2,0 ммоль/л, ионизированного кальция — до 1,15 ммоль/л (см. табл. 1). Такая динамика была расценена как удовлетворительная, мальчик был выписан из хирургического стационара.
Однако аутотрансплантированная околощитовидная железа продолжала секретировать избыточное количество ПТГ — 163 пг/мл, что было причиной персистирующей гиперкальциемии — ионизированный кальций — 1,95 ммоль/л (см. табл. 1). В возрасте 4 мес пациенту было выполнено удаление имплантированной околощитовидной железы.
В 7 мес ребенку по месту жительства был назначен прием масляного раствора витамина D, однако, отметив на фоне его приема снижение аппетита и вялость, родители пациента самостоятельно отменили терапию. В дальнейшем при контроле общего и ионизированного кальция каждые 6 мес показатели были в норме. В возрасте 1 года физическое развитие и массоростовые показатели ребенка уже соответствовали возрасту — рост 74 см, масса тела 9,3 кг.
При обследовании в 3 года 7 мес рост мальчика составил 95,8 см масса тела 15 кг, что соответствует семейному прогнозу (рост матери 164 см, рост отца 170 см); при УЗИ органов брюшной полости и забрюшинного пространства патологии не выявлено; уровень ПТГ 14,2 пг/мл (норма 15—65 пг/мл). В биохимическом анализе крови нормальный уровень общего и ионизированного кальция, слегка повышен уровень фосфора и нормальный уровень щелочной фосфатазы. В биохимическом анализе мочи при нормальном уровне креатинина резко снижена концентрация общего кальция — 0,11 ммоль/л (норма 1,7—5,3 ммоль/л), кальций/креатинин — 0,01 (норма 0,10—0,80), а остальные показатели в пределах нормы (табл. 2).
Результаты молекулярно-генетического исследования. Для подтверждения диагноза было проведено молекулярно-генетическое исследование гена CASR у пациента и его родителей. У мальчика выявлена составная гетерозиготная мутация [c.1656delA p.S554fsX626] + [c.2217T>A p.C739X] (см. рис. 1 и 2 на цв. вклейке).
Мутация в первом аллеле (см. рис. 1), аналогичная найденной у отца ребенка, описана в соответствии с предложенной современной номенклатурой [4, 7]. В ДНК-последовательности («с.») в положении 1656 — делеция аденина (А). Это вызывает сдвиг рамки считывания (fs), в результате которого в положениях 552 и 553 сочетания нуклеотидов меняются на гомологичные (ААА — на AAG, оба кодона соответствуют лизину; GGG — на GGA, оба сочетания кодируют глицин). Таким образом, первая измененная аминокислота — серин (S) замещает изолейцин (I) в положении 554. Такой сдвиг рамки считывания приводит к образованию стоп-кодона (X) в положении 626.
Вторая мутация была обнаружена при секвенировании экзона 7. У пробанда была выявлена гетерозиготная замена тимина (Т) на аденин (A) в положении 2217 (c.2217T>A), что приводило к замене кодона цистеина (TGT) в положении 739 на стоп-кодон TGA (p.C739X). Аналогичная гетерозиготная мутация была найдена у матери мальчика.
Таким образом, благодаря молекулярно-генетическому исследованию диагноз тяжелого неонатального гиперпаратиреоза был подтвержден у пациента, а у родителей ребенка был установлен диагноз семейной гипокальциурической гиперкальциемии. Следует отметить, что ни у матери, ни у отца не было выявлено изменений в биохимическом анализе мочи, а в биохимическом анализе крови был повышен лишь уровень общего кальция при нормальном уровне ионизированного (см. табл. 2).
Регуляция гомеостаза кальция в организме человека. Нормальный уровень кальция в сыворотке крови поддерживается благодаря 3 механизмам: абсорбции — всасыванию кальция в кишечнике, резорбции кости, в результате чего происходит мобилизация кальция и фосфатов из минерализованного матрикса, и реабсорбции кальция в почечных канальцах. Эти процессы регулируются преимущественно 3 гормонами: ПТГ, секретируемым околощитовидными железами, кальцитриолом, который является активной формой витамина D — 1,25-дигидроксивитамином D3 (1,25-ОНD3), и кальцитонином, секретируемым парафолликулярными, или С-клетками, щитовидной железы.
ПТГ стимулирует в почках образование 1,25-ОНD3 — активной формы витамина D3. Кальций поступает в организм с пищей и абсорбируется при содействии 1,25-ОНD3, который стимулирует синтез кальцийсвязывающего белка, транспортирующего его через мембрану клеток слизистой оболочки кишечника. Независимо от этого 1,25-ОНD3 увеличивает кишечное всасывание фосфора. Оба эффекта приводят к повышению концентрации кальция и фосфора во внеклеточной жидкости [8].
При нормальном уровне белков сыворотки крови 50% кальция находится в свободном ионизированном состоянии, 40% связано с белками, преимущественно с альбуминами, и 10% комплексируется с фосфатом, цитратом, бикарбонатом и лактатом. Вследствие этого при изменении концентрации белков сыворотки изменяется уровень кальция в сыворотке крови. Это не влияет на содержание свободного кальция и не дает клинических проявлений. Клиническая симптоматика появляется только при подъеме или снижении уровня ионизированного кальция [9].
При снижении уровня кальция в сыворотке крови он мобилизуется из костной ткани, которая является основным депо кальция в организме человека. ПТГ и 1,25-ОНD3 увеличивают резорбцию кости путем опосредованного влияния на активность остеокластов, что приводит к повышению концентрации кальция и фосфора в сыворотке. В то же время оба гормона способствуют нормальному костеобразованию путем воздействия на остеобласты. 1,25-ОНD3 непосредственно ингибирует секрецию ПТГ и собственный синтез в почках. Повышенный уровень кальция также тормозит синтез ПТГ и 1,25-ОНD3 и стимулирует секрецию кальцитонина щитовидной железой. Фосфор также подавляет синтез 1,25-ОНD3 и комплексируется с кальцием, вызывая снижение уровня кальция в сыворотке крови, что стимулирует секрецию ПТГ и тормозит секрецию кальцитонина. Кальцитонин — гормон, вырабатываемый С-клетками щитовидной железы, тормозит резорбцию кости остеокластами и может увеличивать активность остеобластов. Это приводит к уменьшению уровня кальция в сыворотке и фосфора, в результате чего увеличивается уровень 1,25-ОНD3. Пониженное содержание кальция увеличивает содержание ПТГ [9].
Реабсорбция кальция в дистальных канальцах происходит под действием ПТГ, который наряду с этим вызывает фосфатурию и гипофосфатемию. Кальцитонин, наоборот, уменьшает реабсорбцию кальция [9].
Таким образом, причины гиперкальциемии можно разделить на 3 группы: чрезмерное поступление кальция извне — увеличение абсорбции, избыточная резорбция кости и повышенная реабсорбция.
Заболевания, ассоциированные с кальцийсенсорным рецептором. Описаны 3 наследуемых по аутосомному типу заболевания с синдромом гиперкальциемии, обусловленные инактивацией кальцийсенсорного рецептора: тяжелый неонатальный гиперпаратиреоз, семейная гипокальциурическая гиперкальциемия и семейная гиперкальцурическая гиперкальциемия.
Клинически тяжелый неонатальный гиперпаратиреоз обычно приводит к выраженному повышению уровней кальция и ПТГ в сыворотке. Он проявляется очень рано, в первые дни жизни, когда у младенца развиваются гипотония, вялое сосание, нарушение глотания, кроме того, типично развитие респираторного дистресс-синдрома, ассоциированного с деформациями грудной клетки [10]. Наряду с клиническими симптомами для этого заболевания характерны гиперплазия околощитовидных желез, деминерализация скелета, очень высокая концентрация ПТГ, что приводит к повышению кальция до уровня, угрожающего жизни, и вследствие этого высокая смертность [6]. В тяжелых случаях жизненно необходимо хирургическое вмешательство с тотальной паратиреоидэктомией. Однако есть сообщения о случаях, в которых симптомы не столь опасны и могут контролироваться с использованием медикаментозной терапии для поддержания уровня кальция, пригодного для нормальной жизни [11, 12].
В большинстве случаев тяжелого неонатального гиперпаратиреоза мутации гена кальцийсенсорного рецептора (CASR), картированного на хромосоме 3q21-q24, обнаруживаются в обеих копиях гена, т.е. ребенок получает мутированный аллель от каждого из родителей, страдающих семейной гипокальциурической гиперкальциемией. Наряду с этим имеются также сообщения о мутациях de novo, когда мутация обнаруживалась у одного из родителей или не обнаруживалась вообще [6, 13].
Для семейной гипокальциурической гиперкальциемии характерны умеренное повышение концентрации кальция в сыворотке — гиперкальциемия, снижение экскреции кальция — гипокальциурия, а также несоответствующий этим изменениям нормальный уровень ПТГ [14]. ПТГ у пациентов с семейной гипокальциурической гиперкальциемией относительно нечувствителен к подавлению под влиянием кальция, благодаря чему уровень ПТГ, несмотря на небольшую гиперкальциемию, остается нормальным. Кроме того, поражена система задержки кальция в почечных канальцах и отсутствует способность повысить экскрецию ионов кальция в ответ на гиперкальциемию [15]. Это состояние не является угрожающим для жизни и такие типичные проявления гиперкальциемии, как нарушение нервной деятельности, мочекаменная болезнь, сниженная концентрационная способность и гипертензия, отсутствуют [16].
У пациентов симптомы обычно отсутствуют или имеются такие неспецифичные проявления, как слабость, вялость, боли в суставах и головные боли, а диагноз можно предположить лишь после исследования биохимического анализа крови, в котором выявляется повышенный уровень кальция [14]. В большинстве публикаций семейная гипокальциурическая гиперкальциемия считается наследуемым по аутосомно-доминантному типу заболеванием с высокой пенетрантностью. Доминантный вариант наследования этого заболевания был отнесен к гаплонедостаточности гена CASR, при которой белковый рецептор, продуцируемый одним нормальным аллелем, не может поддерживать нормальную функцию, хотя этого может быть достаточно для выживания [17]. Однако в последнее время некоторые мутации гена предложено рассматривать как аутосомно-рецессивные, так как часто гетерозиготы не имеют никаких проявлений [18].
Т. Carling и соавт. описали большую родословную, у 20 членов которой определялась гиперкальциемия в сочетании с умеренно повышенным уровнем ПТГ в сыворотке и гиперкальциурией [19]. После субтотальной паратиреоидэктомии, проведенной у отдельных пациентов и подтвердившей наличие гиперплазированных околощитовидных желез, была отмечена нормализация уровня кальция в крови и экскреции его с мочой. Такие особенности фенотипических проявлений заболевания были объяснены локализацией мутации в гене CASR, приведшей к замене одной из аминокислот в C-концевом внутриклеточном домене рецептора.
Мутации гена CASR. К моменту написания данной статьи в международную базу данных мутаций гена CASR (http://www.casrdb.mcgill.ca) внесены 259 мутаций у пациентов с тяжелым неонатальным гиперпаратиреозом, семейной гипокальциурической гиперкальциемией, гиперкальциурической гиперкальциемией и аутосомно-доминантной гипокальциемией как наследуемых семейных случаев, так и образованных de novo.
Кроме того, среди людей с нормальным уровнем кальциевого обмена описаны 6 вариантов полиморфизма: один в интроне 5, непосредственно перед экзоном 6, а остальные пять в экзоне 7 — один в 6-м трансмембранном, один в 7-м и 3 во внутриклеточном доменах.
Как минимум 15 мутаций гена CASR были обнаружены в не связанных между собой семьях более одного раза [20]. В нескольких позициях были описаны различные мутации в одном и том же кодоне, что вызывало одинаковый эффект, за исключением одного случая, когда в позиции 297 были описаны активирующая (E297D) и инактивирующая мутации (E297K) [21, 22], что подтверждает важнейшую роль данного региона для активации рецептора.
Значимость мутаций гена CASR во многом зависит от локализации. Например, большинство мутаций, обнаруженных во внеклеточном домене, локализованы в первой трети ДНК-цепочки со стороны N-конца, что подтверждает значение этого региона в связывании лиганда. Активирующие мутации на этом участке могут усиливать связывающие взаимодействия в различных точках, что повышает сродство рецептора к лиганду, а инактивирующие мутации могут давать противоположный эффект, разрушая лигандсвязывающие структуры [23]. Мутации в трансмембранном домене могут «закрывать» рецептор в активированном или инактивированном состоянии, так как последовательности в 7-м домене критичны для поддержания неактивной конформации рецептора [1]. Инактивирующие мутации, приводящие к тотальной потере функции рецептором, могут также быть ассоциированы с полной потерей способности связывания лиганда и активации рецептора [24]. А внутриклеточный домен считается важным для взаимодействия с белками G или другими внутриклеточными посредниками. Специфическое конформационное изменение цитоплазматического домена CASR, обусловленное миссенс-мутацией F881L, могло по-разному повлиять на функцию белков, ассоциированных с рецептором в паратиреоцитах и клетках почечных канальцев, что и привело к необычному сочетанию гиперкальциемии и гиперкальциурии, описанному Т. Carling и соавт. [19].
В описываемом нами случае обе мутации локализованы в экзоне 7. Первая из них приводит к образованию стоп-кодона в положении 626 — в первом трансмембранном домене, а вторая — к образованию стоп-кодона в положении 739 — в четвертом трансмембранном домене. Согласно международной базе данных гена CASR (http://www.casrdb.mcgill.ca), выявленные в этой семье мутации ранее не были описаны.
Заключение
Это первый случай тяжелого неонатального гиперпаратиреоза в российской популяции, получивший молекулярно-генетическое подтверждение. По сравнению с описаниями данного врожденного заболевания в других популяциях особенностью представленного здесь пациента является очень высокий уровень кальция и ПТГ в дебюте заболевания, наличие характерных для гиперпаратиреоза клинических симптомов, таких как вялость, гипотония, запоры, но при этом отсутствие типичного для заболевания поражения длинных трубчатых костей и переломов, которые были описаны у других пациентов [6, 13].
Диагностика редких врожденных заболеваний в раннем детском возрасте может быть крайне затруднительна. Это обычно обусловлено внезапностью и скоротечностью развития симптомов, их неспецифичностью и общим тяжелым состоянием ребенка. Именно в таких ситуациях особенно важна роль врача, наблюдающего за ребенком. Порой проведение обычных исследований и анализ их результатов помогают предположить диагноз.
Как было продемонстрировано, особенностью тяжелого неонатального гиперпаратиреоза является хороший прогноз для пациента при условии своевременного выявления заболевания и адекватной терапии.