The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nefedeva M.V.

Molecular Virology Laboratory Federal Research Center for Virology and Microbiology, 601125, Russia

Titov I.A.

Molecular Virology Laboratory Federal Research Center for Virology and Microbiology, 601125, Russia

Mima K.A.

Molecular Virology Laboratory Federal Research Center for Virology and Microbiology, 601125, Russia

Malogolovkin A.S.

Molecular Virology Laboratory Federal Research Center for Virology and Microbiology, 601125, Russia

Analysis of the african swine fever virus immunomodulatory proteins

Authors:

Nefedeva M.V., Titov I.A., Mima K.A., Malogolovkin A.S.

More about the authors

Read: 1612 times


To cite this article:

Nefedeva MV, Titov IA, Mima KA, Malogolovkin AS. Analysis of the african swine fever virus immunomodulatory proteins. Molecular Genetics, Microbiology and Virology. 2019;37(1):42‑48. (In Russ.)
https://doi.org/10.17116/molgen20193701142

Recommended articles:
Hantaviruses (Hantaviridae) in Repu­blic of Crimea. Mole­cular Gene­tics, Microbiology and Viro­logy. 2024;(4):37-42

References:

  1. Sanchez-Vizcaino JM. African Swine Fever. In: Straw B, D’Allaire S, Mengeling W, Taylor D, (eds). Diseases of Swine. 9th edition. USA: Iowa State University; 2006.
  2. Rodriguez JM, Moreno LT, Alejo A, Lacasta A, Rodriguez F, Salas ML. Genome sequence of african swine fever virus BA71, the virulent parental strain of the nonpathogenic and tissue-culture adapted BA71V. PLoS ONE. 2015;10(11):e0142889. https://doi.org/10.1371/journal.pone.0142889
  3. De Villiers EP, Gallardo C, Arias M, Da Silva M, Upton C, Martin R, et al. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128-136. https://doi.org/10.1016/j.virol.2010.01.019
  4. Sanchez-Vizcaıno JM, Mur L, Gomez-Villamandos JC, Carrasco JL. An Update on the Epidemiology and Pathology of African Swine Fever. J Comp Pathol. 2015;152:9-21. https://doi.org/10.1016/j.jcpa.2014.09.003
  5. Rock DL. Challenges for African swine fever vaccine development — «...perhaps the end of the beginning». Vet Microbiol. 2017;206:52-58. https://doi.org/10.1016/j.vetmic.2016.10.003
  6. Kolbasov DV, Balyshev VM, Sereda AD. Results of research works on the development of live vaccines against African swine fever. Veterinariya. 2014;8:3-8. (In Russ.)
  7. King K, Chapman D, Argilaguet JM, Fishbourne E, Hutet E, Cariolet R, et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 2011;29(28):4593-4600. https://doi.org/10.1159/000170936
  8. Dixon LK, Abrams CC, Chapman DD, Goatley LC, Netherton CL, Taylor G, et al. Prospects for development of African swine fever virus vaccines. Dev Biol (Basel). 2013;135:147-157. https://doi.org/10.1159/000170936
  9. Nix RJ, Gallardo C, Hutchings G, Blanco E, Dixon LK. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch Virol. 2006;151(12):2475-2494. https://doi.org/10.1007/s00705-006-0794-z
  10. Dixon LK, Baylis SA, Vydeingum S, Twigg SRF, Hammond JM, Hingamp PM, et al. African swine fever virus genome content and variability. Arch Virol. 1993;7:185-199. https://doi.org/10.1007/978-3-7091-9300-6_15
  11. Dixon LK, Abrams CC, Bowick G, Goatley LC, Kay-Jackson PC, Chapman D, et al. African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol. 2004;100(3-4):117-134. https://doi.org/10.1016/j.vetimm.2004.04.002
  12. De Oliveira VL, Almeida SC, Soares HR, Crespo A, Marshall-Clarke S, Parkhouse RME. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Arch Virol. 2011;156:597-609. https://doi.org/10.1007/s00705-010-0894-7
  13. Zsak L, Lu Z, Kutish GF, Neilan JG, Rock DL. An african swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J Virol. 1996;70(12):8865-8871.
  14. Granja AG, Perkins ND, Revilla Y. A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. J Immunol. 2008;180(4):2429-2442. https://doi.org/10.4049/jimmunol.1490049
  15. Chapman DA, Tcherepanov V, Upton C, Dixon LK. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol. 2008;89(2):397-408. https://doi.org/10.1099/vir.0.83343-0
  16. Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36:35-41. https://doi.org/10.1093/nar/gkn211
  17. Nielsen H. Predicting Secretory Proteins with SignalP. In: Kihara D., (eds). Protein Function Prediction. Springer. 2017:59-73. https://doi.org/10.1007/978-1-4939-7015-5_6
  18. Dobson L, Remenyi I, Tusnady GE. CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 2015;43(1):408-412. https://doi.org/10.1093/nar/gkv451
  19. Gallardo C, Mwaengo DM, Macharia JM, Arias M, Taracha EA, Soler A, et al. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes. 2009;38(1):85-95. https://doi.org/10.1007/s11262-008-0293-2
  20. Bastos AD, Penrith ML, Cruciere C, Edrich JL, Hutchings G, Roger F, et al. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol. 2003;148(4):693-706. https://doi.org/10.1007/s00705-002-0946-8
  21. Sereda AD, Balyshev VM. Antigenic diversity of African swine fever viruses. Vopr Virusol. 2011;56(4):38-42. (In Russ.)
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. https://doi.org/10.1093/molbev/mst197
  24. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004;13(6):1435-1448. https://doi.org/10.1110/ps.03554604
  25. Jousse C, Oyadomari S, Novoa I, Lu PD, Zhang Y, Harding HP, et al. Inhibition of a constitutive translation initiation factor 2a phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163:767-775. https://doi.org/10.1083/jcb.200308075
  26. Chapman DA, Darby AC, Da Silva M, Upton C, Radford AD, Dixon LK. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerging Infect Dis. 2011;17(4):599-605. https://doi.org/10.3201/eid1704.101283
  27. Neilan JG, Lu Z, Kutish GF, Zsak L, Lewis TL, Rock DL. A conserved African swine fever virus I kappa B homolog, 5el, is nonessential for growth in vitro and virulence in domestic swine. Virology. 1997;235(2):377-385. https://doi.org/10.1006/viro.1997.8693
  28. Abrams CC, Chapman DA, Silk R, Liverani E, Dixon LK. Domains involved in calcineurin phosphatase inhibition and nuclear localisation in the African swine fever virus A238L protein. Virology. 2008;374(2):477-486. https://doi.org/10.1371/journal.pbio.1001492
  29. Mima KA, Burmakina GS, Titov IA, Malogolovkin AS. African swine fever virus glycoproteins p54 and CD2v in the context of immune response modulation: bioinformatic analysis of genetic variabili- ty and heterogeneity. Sel’skokhozyaistvennaya biologiya. 2015;50(6):785-793. (In Russ.) https://doi.org/10.15389/agrobiology.2015.6.785rus
  30. Bishop RP, Fleischauer C, de Villiers EP, Okoth EA, Arias M, Gallardo C, et al. Comparative analysis of the complete genome sequences of Kenyan African swine fever virus isolates within p72 genotypes IX and X. Virus Genes. 2015;50(2):303-390. https://doi.org/10.1007/s11262-014-1156-7
  31. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet. 2001;28:281-285. https://doi.org/10.1038/90129
  32. Miya M, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol. 2000;17:437-455. https://doi.org/10.1006/mpev.2000.0839
  33. Rowlands RJ, Duarte MM, Boinas F, Hutchings G, Dixon LK. The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology. 2009;393(2):319-328. https://doi.org/10.1016/j.virol.2009.07.040
  34. Suarez C, Gutierrez-Berzal J, Andres G, Salas ML, Rodriguez JM. African Swine Fever Virus Protein p17 Is Essential for the Progression of Viral Membrane Precursors toward Icosahedral Intermediates. J Virol. 2010;84(15):7484-7499. https://doi.org/10.1128/JVI.00600-10

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.