The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Turgunov Ye.M.

Karaganda Medical University

Ogizbayeva A.V.

Karaganda Medical University

Mugazov M.M.

Karaganda Medical University

Asamidanova S.G.

Karaganda Medical University

Biomarkers of intestinal wall damage in multiple organ dysfunction syndrome

Authors:

Turgunov Ye.M., Ogizbayeva A.V., Mugazov M.M., Asamidanova S.G.

More about the authors

Read: 1234 times


To cite this article:

Turgunov YeM, Ogizbayeva AV, Mugazov MM, Asamidanova SG. Biomarkers of intestinal wall damage in multiple organ dysfunction syndrome. Russian Journal of Anesthesiology and Reanimatology. 2024;(2):114‑120. (In Russ.)
https://doi.org/10.17116/anaesthesiology2024021114

Recommended articles:
Gastrointestinal tract protection with nitric oxide in aortic arch surgery: a randomized study. Russian Journal of Anesthesiology and Reanimatology. 2025;(4):13-20

References:

  1. Asim M, Amin F, El-Menyar A. Multiple organ dysfunction syndrome: Contemporary insights on the clinicopathological spectrum. Qatar Medical Journal. 2020;(1):22.  https://doi.org/10.5339/qmj.2020.22
  2. Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, Kraft CS, Martin GS, Martin GS. The Gut Microbiome’s Role in the Development, Maintenance, and Outcomes of Sepsis. Critical Care. 2020;24(1):278.  https://doi.org/10.1186/s13054-020-02989-1
  3. Tyszko M, Lema´nska-Perek A, ´Smiechowicz J, Tomaszewska P, Biecek P, Gozdzik W, Adamik B. Citrulline, Intestinal Fatty Acid-Binding Protein and the Acute Gastrointestinal Injury Score as Predictors of Gastrointestinal Failure in Patients with Sepsis and Septic Shock. Nutrients. 2023;15(9):2100. https://doi.org/10.3390/nu15092100
  4. Assimakopoulos SF, Triantos C, Thomopoulos K. Fligou F, Maroulis I, Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018;46(6):751-760.  https://doi.org/10.1007/s15010-018-1178-5
  5. Alukal JJ, Thuluvath PJ. Gastrointestinal Failure in Critically Ill Patients with Cirrhosis. American Journal of Gastroenterology. 2019;114(8):1231-1237. https://doi.org/10.14309/ajg.0000000000000226
  6. Wang F, Li Q, Wang C, Tang C, Li J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS One. 2012;7(7):e42027. https://doi.org/10.1371/journal.pone.0042027
  7. Stubljar D. Effective Strategies for Diagnosis of Systemic Inflammatory Response Syndrome (SIRS) due to Bacterial Infection in Surgical Patients. Infectious Disorders Drug Targets. 2015;15(1):53-56.  https://doi.org/10.2174/1871526515666150320161804
  8. Clark JA, Coopersmith CM. Intestinal crosstalk: A new paradigm for understanding the gut as the ‘motor’ of critical illness. Shock. 2007;28(4):384-393.  https://doi.org/10.1097/shk.0b013e31805569df
  9. Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes tight junctions: from molecules to diseases. World Journal of Gastrointestinal Pathophysiology. 2011;2(6):123-137.  https://doi.org/10.4291/wjgp.v2.i6.123
  10. Anand RJ, Leaphart CL, Mollen KP, Hackam DJ. The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock. 2007;27(2):124-133.  https://doi.org/10.1097/01.shk.0000239774.02904.65
  11. Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian Journal of Medical Microbiology. 2013;31(4):334-342.  https://doi.org/10.4103/0255-0857.118870
  12. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annual Review of Microbiology. 2016;70:395-411.  https://doi.org/10.1146/annurev-micro-102215-095513
  13. Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clinical Gastroenterology and Hepatology. 2012;10(10):1096-1100. https://doi.org/10.1016/j.cgh.2012.08.012
  14. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000;355(9214):1518-1519. https://doi.org/10.1016/S0140-6736(00)02169-3
  15. Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems. PLoS One. 2019;14(1):e0210728. https://doi.org/10.1371/journal.pone.0210728
  16. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology: Gastrointestinal and Liver Physiology. 2017;312(3):G171-G93.  https://doi.org/10.1152/ajpgi.00048.2015
  17. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:F1000 Faculty Rev-69.  https://doi.org/10.12688/f1000research.20510.1
  18. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, Mohan V, Balasubramanyam M. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Molecular and Cellular Biochemistry. 2014;388(1-2):203-210.  https://doi.org/10.1007/s11010-013-1911-4
  19. Esnafoglu E, Cırrık S, Ayyıldız SN, Erdil A, Ertürk EY, Daglı A, Noyan T. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. Journal of Pediatrics. 2017;188:240-244.  https://doi.org/10.1016/j.jpeds.2017.04.004
  20. Ouyang J, Yan J, Zhou X, Isnard S, Harypursat V, Cui H, Routy J-P, Chen Y. Relevance of biomarkers indicatinggut damage and microbial translocation inpeople living with HIV. Frontiers in Immunology. 2023;14:1173956. https://doi.org/10.3389/fimmu.2023.1173956
  21. Giron LB, Dweep H, Yin X, Wang H, Damra M, Goldman AR, Gorman N, Palmer CS, Tang H-Y, Shaikh MW, Forsyth CB, Balk RA, Zilberstein NF, Liu Q, Kossenkov A, Keshavarzian A, Landay A, Abdel-Mohsen M. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Frontiers in Immunology. 2021;12:686240. https://doi.org/10.3389/fimmu.2021.686240
  22. Klaus DA, Motal MC, Burger-Klepp U, Marschalek C, Schmidt EM, Lebherz-Eichinger D, Krenn CG, Roth GA. Increased plasma zonulin in patients with sepsis. Biochemia Medica. 2013;23(1):107-111.  https://doi.org/10.11613/BM.2013.013
  23. Liu Z, Li C, Huang M, Tong C, Zhang X, Wang L, Peng H, Lan P, Zhang P, Huang N, Peng J, Wu X, Luo Y, Qin H, Kang L, Wang J. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterology. 2015;15:34.  https://doi.org/10.1186/s12876-015-0260-z
  24. Assimakopoulos SF, Akinosoglou K, de Lastic A-L, Skintzi A, Mouzaki A, Gogos CA. The prognostic value of endotoxemia and intestinal barrier biomarker ZO-1 in bacteremic sepsis. American Journal of Medical Sciences. 2019;359(2):100-107.  https://doi.org/10.1016/j.amjms.2019.10.006
  25. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384. https://doi.org/10.1080/21688370.2016.1251384
  26. Buttet M, Traynard V, Tran TT, Besnard P, Poirier H, Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinallipid-binding proteins. Biochimie. 2014;96:37-47.  https://doi.org/10.1016/j.biochi.2013.08.011
  27. Piton G, Capellier G. Biomarkers of gut barrier failure in the icu. Current Opinion in Critical Care. 2016;22(2):152-160.  https://doi.org/10.1097/MCC.0000000000000283
  28. Keenan JI, Day AS. The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases. Digestive Diseases and Sciences. 2020;65(2):376-390.  https://doi.org/10.1007/s10620-019-05841-x
  29. Shaaban A, Alfqy O, Shaaban H, A-Maqsoud Y, Assar E. Potential Role of Serum Intestinal Fatty Acid-Binding Protein as a Marker for Early Prediction and Diagnosis of Necrotizing Enterocolitis in Preterm Neonates. Journal of Indian Association of Pediatric Surgeons. 2021;26(6):393-400.  https://doi.org/10.4103/jiaps.JIAPS_218_20
  30. Voth M, Duchene M, Auner B, Lustenberger T, Relja B, Marzi I. I-FABP is a novel marker for the detection of intestinal injury in severely injured trauma patients. World Journal of Surgery. 2017;41(12):3120-3127. https://doi.org/10.1007/s00268-017-4124-2
  31. Voth M, Lustenberger T, Relja B, Marzi I. Is I-FABP not only a marker for the detection abdominal injury but also of hemorrhagic shock in severely injured trauma patients? World Journal of Emergency Surgery. 2019;14:49.  https://doi.org/10.1186/s13017-019-0267-9
  32. Kastl SP, Krychtiuk KA, Lenz M, Distelmaier K, Goliasch G, Huber K, Wojta J, Heinz G, Speidl WS. Intestinal fatty acid binding protein is associated with mortality in patients with acute heart failure or cardiogenic shock. Shock. 2019;51(4):410-415.  https://doi.org/10.1097/SHK.0000000000001195
  33. Sekino M, Okada K, Funaoka H, Sato S, Ichinomiya T, Higashijima U, Matsumoto S, Yoshitomi O, Eishi K, Hara T. Association between enterocyte injury and mortality in patients on hemodialysis who underwent cardiac surgery: an exploratory study. Journal of Surgical Research. 2020;255:420-427.  https://doi.org/10.1186/s12871-021-01515-2
  34. Sekino M, Funaoka H, Sato S, Okada K, Inoue H, Yano R, Matsumoto S, Ichinomiya T, Higashijima U, Matsumoto S, Hara T. Association between macroscopic tongue ischemia and enterocyte injury and poor outcome in patients with septic shock: a preliminary observational study. Shock. 2018;50(5):530-537.  https://doi.org/10.1097/SHK.0000000000001122
  35. Matsumoto S, Sekine K, Funaoka H, Yamazaki M, Shimizu M, Hayashida K, Kitano M. Diagnostic performance of plasma biomarkers in patients with acute intestinal ischaemia. British Journal of Surgery. 2014;101(3):232-238.  https://doi.org/10.1002/bjs.9331
  36. Kostina OV, Didenko NV, Galova EA, Pushkin AS, Zagrekov VI, Ashkinazi VI, Presnyakova MV. Fatty acid-binding protein as a marker of intestinal damage and potential predictor of mortality in acute period of burn disease. Russian Journal of Anesthesiology and Reanimatology. 2023;(6):52-57. (In Russ., In Engl.). https://doi.org/10.17116/anaesthesiology202306152
  37. Tyszko M, Lipinska-Gediga M, Lemanska-Perek A, Kobylinska K, Gozdzik W, Adamik B. Intestinal Fatty Acid Binding Protein (I-FABP) as a Prognostic Marker in Critically Ill COVID-19 Patients. Pathogens. 2022;11(12):1526. https://doi.org/10.3390/pathogens11121526
  38. Zou L, Song X, Hong L, Shen X, Sun J, Zhang C, Mu X. Intestinal fatty acid-binding protein as a predictor of prognosis in postoperative cardiac surgery patients. Medicine. 2018;97(33):e11782. https://doi.org/10.1097/MD.0000000000011782
  39. Yokoyama H, Sekino M, Funaoka H, Sato S, Araki H, Egashira T, Yano R, Matsumoto S, Ichinomiya T, Higashijima U, Hara T. Association between enterocyte injury and fluid balance in patients with septic shock:a post hoc exploratory analysis of a prospective observational study. BMC Anesthesiology. 2021;21(1):293.  https://doi.org/10.1186/s12871-021-01515-2
  40. Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Edinburgh RM, Delves SK, Millyard A, Westwood CS, Layden JD. Reliability of gastrointestinal barrier integrity and microbial translocation biomarkers at rest and following exertional heat stress. Physiological Reports. 2020;8(5):e14374. https://doi.org/10.14814/phy2.14374
  41. Ho SSC, Keenan JI, Day AS. The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases. Digestive Diseases and Sciences. 2020;65(2):376-390.  https://doi.org/10.1007/s10620-019-05841-x
  42. Chaaban H, Patel MM, Burge K, Eckert JV, Lupu C, Keshari RS, Silasi R, Regmi G, Trammell M, Dyer D, McElroy SJ, Lupu F. Early antibiotic exposure alters intestinal development and increases susceptibility to necrotizing enterocolitis: A mechanistic study. Microorganisms. 2022;10(3):519.  https://doi.org/10.3390/microorganisms10030519
  43. Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S. Simpson KF, Van Dussen KL, Winkler ES, Haritunians T. Malique A. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe. 2021;29(6):988-1001. https://doi.org/10.1016/j.chom.2021.04.004
  44. Cray P, Sheahan BJ, Dekaney CM. Secretory sorcery: Paneth cell control of intestinal repair and homeostasis. Cellular and Molecular Gastroenterology and Hepatology. 2021;12(4):1239-1250. https://doi.org/10.1016/j.jcmgh.2021.06.006
  45. Barreto EBL. Rattes IC, Da CA, Gama, P. Paneth cells and their multiple functions. Cell Biology International. 2022;46(5):701-710.  https://doi.org/10.1002/cbin.11764
  46. Yang W, Yuan Q, Li Z, Du Z, Wu G, Yu J, Hu J. Translocation and Dissemination of Gut Bacteria after Severe Traumatic Brain Injury. Microorganisms. 2022;10(10):2082. https://doi.org/10.3390/microorganisms10102082
  47. Shin JH, Seeley RJ. Reg3 proteins as gut hormones? Endocrinology. 2019;160(6):1506-1514. https://doi.org/10.1210/en.2019-00073
  48. Chen Z, Downing S, Tzanakakis ES. Four decades after the discovery of regenerating islet-derived (Reg) proteins: current understanding and challenges. Frontiers in Cell and Developmental Biology. 2019;7:235.  https://doi.org/10.3389/fcell.2019.00235
  49. Isnard S, Ramendra R, Dupuy FP, Lin J, Fombuena B, Kokinov N, Kema I, Jenabian MA, Lebouché B, Costiniuk CT, Ancuta P, Bernard NF, Silverman MS, Lakatos PL, Durand M, Tremblay C, Routy JP; Montreal Primary HIV Infection Study, the Canadian Cohort of HIV+ Slow Progressors, and the Canadian HIV and Aging Cohort Groups. Plasma levels of c-type lectin REG3alpha and gut damage in people with human immunodeficiency virus. Scandinavian Journal of Infectious Diseases Supplementum. 2020;221(1):110-121.  https://doi.org/10.1093/infdis/jiz423
  50. Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L, Chiappini F, Samuel D, Lepage P, Guerrieri F, Doré J, Bréchot C, Moniaux N, Faivre J. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology. 2018;154(4):1009-1023. https://doi.org/10.1053/j.gastro.2017.11.003
  51. Bluemel S, Wang L, Martino C, Lee S, Wang Y, Williams B, Horvath A, Stadlbauer V, Zengler K, Schnabl B. The role of intestinal c-type regenerating islet derived-3 lectins for nonalcoholic steatohepatitis. Hepatology Communications. 2018;2(4):393-406.  https://doi.org/10.1002/hep4.1165
  52. Yang J, Syed F, Xia Y, Sanyal AJ, Shah VH, Chalasani N, Zheng X, Yu Q, Lou Y, Li W. Blood biomarkers of intestinal epithelium damage regenerating islet-derived protein 3alpha and trefoil factor 3 are persistently elevated in patients with alcoholic hepatitis. Alcoholism, Clinical and Experimental Research. 2021;45(4):720-731.  https://doi.org/10.1111/acer.14579
  53. Zhao D, Kim YH, Jeong S, Greenson JK, Chaudhry MS, Hoepting M, Anderson ER, van den Brink MR, Peled JU, Gomes AL, Slingerland AE, Donovan MJ, Harris AC, Levine JE, Ozbek U, Hooper LV, Stappenbeck TS, Ver Heul A, Liu TC, Reddy P, Ferrara JL. Survival signal REG3alpha prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. The Journal of Clinical Investigation. 2018;128(11):4970-4979. https://doi.org/10.1172/JCI99261
  54. Zhang N, Gou Y, Liang S, Chen N, Liu Y, He Q, Zhang J. Dysbiosis of Gut Microbiota romotes Hepatocellular Carcinoma Progression by Regulating the Immune Response. Journal of Immunology Research. 2021;4973589. https://doi.org/10.1155/2021/4973589
  55. Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. United European Gastroenterology Journal. 2018;6(2):181e91. https://doi.org/10.1177/2050640617737632
  56. Kartaram S, Mensink M, Teunis M, Schoen E, Witte G, Janssen Duijghuijsen L, Verschuren M, Mohrmann K, M’Rabet L, Knipping K, Wittink H, van Helvoort A, Garssen J, Witkamp R, Pieters R, van Norren K. Plasma citrulline concentration, a marker for intestinal functionality, reflects exercise intensity in healthy young men. Clinical Nutrition. 2019;38(5):2251-2258. https://doi.org/10.1016/j.clnu.2018.09.029
  57. Howarth C, Banerjee J, Eaton S, Aladangady N. Biomarkers of gut injury in neonates — where are we in predicting necrotising enterocolitis? Frontiers in Pediatrics. 2022;10:1048322. https://doi.org/10.3389/fped.2022.1048322
  58. Bajaj JS, Vargas HE, Reddy KR, Lai JC, O’Leary JG, Tandon P, Wong F, Mitrani R, White MB, Kelly M, Fagan A, Patil R, Sait S, Sikaroodi M, Thacker LR, Gillevet PM. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis. Clinical Gastroenterology and Hepatology. 2019;17(4):756-765.  https://doi.org/10.1016/j.cgh.2018.07.022
  59. Katell P, Nuzzo, Guedj A, Paugam K, Paugam C, Corcos O. Diagnosis biomarkers in acute intestinal ischemic injury: so close, yet so far. Clinical Gastroenterology and Hepatology. 2018;56(3):373-385.  https://doi.org/10.1515/cclm-2017-0291

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.